

Mass Spectral Correlations

Fred W. McLafferty

Eastern Research Laboratory Dow Chemical Co. Framingham, Mass.

40

ADVANCES IN CHEMISTRY SERIES

AMERICAN CHEMICAL SOCIETY

WASHINGTON, D. (C. 1º	963
------------------	-------	-----

Copyright © 1963

American Chemical Society

All Rights Reserved

Library of Congress Catalog Card 63-17704

PRINTED IN THE UNITED STATES OF AMERICA

American Chemical Society Library 1155 16th St. N. W.

In Mass Sp**Washington** on **D**. McLaft **20036** Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

Advances in Chemistry Series Robert F. Gould, *Editor*

Advisory Board

Raymond F. Boyer John H. Fletcher Jack Halpern Wayne W. Hilty George W. Irving Walter C. Saeman Calvin L. Stevens Calvin A. Vanderwerf George A. Watt

AMERICAN CHEMICAL SOCIETY

APPLIED PUBLICATIONS

INTRODUCTION

For a number of years, the mass spectrometer has been applied to the elucidation of problems in molecular structure. Correlations of mass spectra with structure have now been made for almost all of the common types of organic compounds (2, 8). Most of these correlations by necessity, emphasize the type of spectral pattern or decomposition paths to be expected for a particular type of molecular structure. However, in determining the structure of an unknown compound, the reverse situation is presented -i.e., the prominent ions in the mass spectrum are known, from which one wishes to determine the most probable molecular structure or structures. When the reference mass spectrum of the unknown has been run previously, this can be located from the prominent peaks, using a number of filing systems previously described (5, 6, 9, 11, 14, 15). However, it obviously is highly desirable to have an identification system not dependent on the availability of the standard spectrum of the unknown. This similar problem in other fields of spectroscopy has led to charts or tables indicating the prominent functional groups or other structural features which are found at particular wave lengths. Perhaps such tabulations have been most widely used in infrared spectroscopy - e.g., "the Colthup chart" (4). A previous suggestion for such a system for mass spectrometry (9) has led to the accompanying tabulation of mass spectral correlations.

GENERAL DESCRIPTION

In designing this table, the purpose was to provide, where possible, the empirical and structural formulas of ions that might be found at a particular m/e in a mass spectrum, plus an indication of how each such ion might have arisen. A further purpose was to give an indication of the probability of each such classification of ions occurring. Thus, the table should indicate possible ion structures and precursor molecules for each of the prominent ions in the mass spectrum of an unknown compound, with a further indication of the general probability of their occurrence.

The mass spectral data used in this tabulation were available in a card file (9) containing a card for each of the 10 most prominent peaks in the 4000 referenced mass spectra. These cards were filed serially by nominal mass number with separation within each m/e by order of abundance in the particular mass spectrum. Thus, at m/e 123 in this file there appeared a card for each compound in which m/e 123 was one of the 10 most abundant ions in the mass spectrum. Cards for all compounds in which m/e 123 was the largest peak in the spectrum appeared

first, followed by those in which m/e 123 was the second largest, etc., through the 10th most abundant.

To prepare the tabular correlation, each of the cards filed under a particular mass number was examined to ascertain the relationship of this peak in the spectrum to the structure of the compound. Where possible, the empirical and structural formulas and the mechanism of formation of the ion were assigned, plus the general structural type or functional group of the particular compound which gave rise to this ion. The number of cards under each such classification under the particular m/e were recorded for each magnitude (second most abundant, etc.). Such data were accumulated for the three most abundant ions in all mass numbers filed (m/e 1-500), with less abundant ions being included for those mass numbers containing fewer cards in the three highest peaks. All 10 of the highest peaks in the spectra were included above m/e 218.

Some ions were not included in the classifications because it was felt that they were not sufficiently representative of types of compound structures or functional groups. These are listed as the "P.I.D. ions," representing the "*Parent*" or molecular ions, ions due to *isotopic* species of smaller or artificial abundance – e.g., carbon - 13 or deuterium – and *doubly* charged (or multiply charged) ions or other ions of fractional mass, as metastable ions. "Other unclassified" ions are those for which it was felt there was insufficient evidence of their structural significance for classification.

PRESENTATION OF DATA

m/e. The mass-to-charge ratio in the first column of the table is calculated from the assumed empirical formula, using the atomic weight scale based on carbon = 12.000000. Almost all of the spectra used in this study, however, were run on instruments of insufficient resolving power to determine such fractional masses, so that it had to be assumed that each peak represented only one empirical formula. Thus, the significant figures shown are as calculated, not as determined. The correlations should still prove useful, however, where it is possible to determine the m/e of the unknown peak in question to millmass unit accuracies. As has been shown extensively by Beynon and coworkers (1, 2), this will then make possible the assignment of the empirical formula within each of the unit mass classifications, and thus simplify the identification problem.

There is a definite possibility that even the nominal mass number is in error, because of the very large number of spectra examined and the "uncertified" nature of these. This is especially true, naturally, at higher mass numbers, where resolution is decreased and mass markers become less reliable. However, many of these errors were eliminated because of the correlative nature of this study, and in doubtful cases, the peak was put in the "unclassified" section. The author welcomes correspondence on any errors which are found by readers, and hopes that such helpful criticism, as well as the increased availability of high resolution spectra - e.g., (3) - will largely eliminate such errors in later editions of this table.

Empirical Formula. Only the ion of m/e of the most abundant combination of isotopes is classified. If there are multiple possibilities

because of the presence of natural or artificial isotopes, the remainder are classified under P.I.D. Thus in a particular spectrum if the $C_{20}H_{15}^+$ ion is the most abundant, the $C_{20}C^{18}H_{15}^+$ ion could well be the fifth most abundant. It is not classified, as its significance is usually fairly obvious from the presence of the larger C_{21} H₁₅ peak. In the case of elements with more highly abundant natural isotopes, however, this leads to some possibly unexpected classifications. Thus, the most abundant $CHBr_2^+$ ion is not that containing two atoms of the most abundant of the isotopes, Br⁷⁹. Because the Br⁸¹ abundance is nearly that of the Br⁷⁹, CHBr₂⁺ gives ions of m/e 171, 173, and 175 in a ratio of 1:2:1. Thus, a spectrum giving rise to the CHBr_2^+ ion would be referenced only under $\text{CHBr}^{79}\text{Br}^{81}$, m/e 173, and the corresponding isotopic ions at m/e 171 and 175 would be tabulated under P.I.D. This should cause no difficulty in the identification of CHBr,⁺ from an unknown spectrum, as the largest peak should be used first to identify the ion.

<u>Structural Significance.</u> Where possible, the types of ions causing the empirical formula shown are postulated, and the abundant compound types found are tabulated separately. The justifications for many such structural classifications are due to careful correlations of spectra that have been published by a variety of authors. No attempt has been made to give proper credit or reference to this vital previous work. Such an attempt would seriously complicate the table, and it was also impossible to give proper credit in every case. The author found most helpful a number of unpublished correlations which had been prepared informally by coworkers in the Dow laboratories. In addition, a sizable number of interesting structure-spectral relations were found which are reported for the first time in this table. The theoretical implications of these new correlations will be discussed in separate publications.

The author has had the temerity to make structural classifications and postulate correlations in many cases without rigorous proof. This is partially based on experience and intuition, but it is presumed that a number of such postulations will in time be shown to be incorrect. It is hoped that in most cases these will serve a useful purpose, even if only to stimulate the reader to point out such errors. Where the assignment is in considerable doubt, a question mark has been inserted and, of course, the most dubious cases have been listed under Unclassified.

If there appear to be two ways in which the particular ion in the spectrum could have arisen, it is usually classified under the most probable. If this is uncertain or if it is felt the ion would be considerably less abundant if only one such structural influence were active, it is listed as Unclassified. However, at most mass numbers there are few cases of this. At m/e 57 a further breakdown of overlapping mechanisms was attempted because of the very large number of $C_4 H_9^+$ ions found. Thus, a second number is listed following that indicating the number of tabulations under the most abundant, etc., peaks to indicate those compounds in which a second structural feature influenced the formation of this peak. For example, in *tert*-butyl ethers the high abundance of the $C_4 H_9^+$ ion is caused by the ready cleavage both at the branched *tert*-butyl group and at the alpha bond of the ether.

A homologous series of compounds will be expected to show similarities in structural correlations. Thus, when the classifications for a particular empirical formula were found to be parallel to a lower member of the homologous series, reference has often been made to this lower ion instead of making a complete listing of the possibilities. Since the higher member of the series is usually not represented by as many compound examples in the mass spectral file, it may be that one or more of the structural types indicated for the lower member were not actually found at the higher mass. At m/e 200 and above, individual compounds are often listed with the inference that by checking lower members of the homologous series analogous possible structures will be indicated. For the individual compound the postulated mechanism of formation of the particular ion is usually indicated, followed by "etc." where it is thought that the other classifications found for lower members of the homologous series will apply here also. For example, at m/e 223, the structure "Cl(H,C,), PhCH(CH₃)-, Indications of other possible structures can thus be etc." is listed. found at m/e 189 (which refers to m/e 133) and m/e 209 (which refers to m/e 125) which list molecules in which Cl- and CH₃-, respectively, are replaced by H-. Thus through these cross references one can infer that at m/e 223 such structures as Cl (H₁₁ C₅)PhC (CH₃)₂ - and $Cl (CH_3)_2 (C_2 H_5)_2 PhCH (CH_3)$ - are also probable.

A number of ion types are placed under P.I.D. (Parent, Isotopic, Doubly charged) instead of being classified separately. It is felt that the parent (molecular) ion is not representative of a structural type, but only of a single compound or group of isomeric compounds. Thus, the usefulness of the molecular ion for structure determination lies more in the indication of empirical formula for the parent molecule and in indicating the structural groups of the molecule through the difference in mass between the parent ion and other prominent peaks in the mass spectrum. The peak at highest m/e represents the molecule ion when the molecular has sufficient chemical stability - e.g., unsaturated or cyclic structures. As a further check, the parent will be an "odd-electron" ion with an m/e of even number unless the ion contains an odd number of nitrogen atoms (2, 8).

An ion containing a less abundant combination of isotopes, also included under P.I.D., is not classified separately because identification is usually more simple from the more abundant isotopic combination. The mass number and relative abundance of isotopic ions can be calculated from the accompanying table. It might be argued that classification of these could be useful where the more abundant isotopic combination is obscured by another ion of nominally identical mass. This, however, will be an unusual circumstance and can be overcome by careful use of the table or by the use of exact empirical structure determination through high resolution techniques.

Multiply charged ions, a third classification under P.I.D., are rarely of sufficient abundance to be included. Those that were found usually offered little apparent structural significance in addition to the corresponding singly charged ion and were much less abundant, although further work in this field may show helpful correlations. The most common doubly charged ions of sufficient abundance were

4

NATURAL ABUNDANCES OF COMMON ISOTOPES

Element	Isotope and Natural Abundance (Most Abundant = 100%)
Hydrogen	1, 100%; 2, 0.0156%
Boron	10, 23.2% [25.0%, (12)]; 11, 100%
Carbon	12, 100%; 13, 1.120%
Nitrogen	14, 100%; 15, 0.36%
Oxygen	16, 100%; 17, 0.04%; 18, 0.20%
Fluorine	<i>19</i> , 100%
Silicon	28, 100%; 29, 5.07%; 30, 3.31%
Phosphorus	31, 100%
Sulfur	<i>32</i> , 100%; <i>33</i> , 0. 78%; <i>34</i> , 4 . 39 %
Chlorine	<i>35</i> , 100%; <i>37</i> , 32 . 7%
Gallium	<i>69</i> , 100%; <i>71</i> , 66. 7%
Germanium	70, 56.0%; 72, 75.0%; 73, 21.2%; 74, 100%; 76, 21.3%
Arsenic	<i>75</i> , 100%
Selenium	74, 1.92%; 76, 18.2%; 77, 15.0%; 78, 47.4% 80, 100%; 82, 17.7%
Bromine	<i>79</i> , 100%; <i>81</i> , 97.5%
Tin	112, 3.07% ; 114, 2.08% ; 115, 1.07% ; 116, 43.6% ; 117, 23.4% ; 118, 72.8\%; 119, 26.5\%; 120, 100\%; 122, 14.5\%; 124, 18.3\%
Antimony	<i>121</i> , 100%; <i>123</i> , 74. 7%
Iodine	<i>127</i> , 100%
Mercury	196, 0.54%; 198, 33.6%; 199, 56.9%; 200, 77.7%; 201, 44.5%; 202, 100%; 204, 23.0%
Lead	204, 2.66%; 206, 50.9%; 207, 40.4%; 208, 100%

Most instruments show some mass discrimination which tends to lower the observed abundance of the heavier isotope a few per cent.

found in the spectra of fused ring aromatic hydrocarbons and generally arose from loss of one or more hydrogens from the parent ion. No metastable ions were found of significant abundance, but most of the spectra from the author's laboratory were recorded using a metastable suppressor to eliminate such ions.

No attempt has been made to give the true structure of the ion, if it is actually other than that indicated by the nominal bond cleavages. For example, Meyerson and his coworkers (12) have shown that cleavage of the benzylic bond in aromatic hydrocarbons does not give the benzyl ion, $C_6H_5CH_2^+$, but the rearranged tropylium ion. Thus, the entry PhCH₂ \ddagger R under m/e 91 indicates only the benzylic bond cleavage and not the rearrangement.

Relative Probability of Ions. The final columns of the tabulation, headed 1, 2, 3, and possibly up through 10, show the number of compounds giving peaks of each relative magnitude under each structural Thus, of the 212 compounds studied in which m/e 91 classification. is one of the three highest peaks in the spectrum, 48 were found to be formed as the most abundant through the benzylic cleavage loss of an alkoxyl, alkyl, halogen, carbonyl, etc., group. Further, such a cleavage was found to produce the second and third highest peaks in the spectra of 18 and five compounds, respectively. Thus, one can draw the inference in attempting to identify a base (highest) m/e 91 peak in an unknown spectrum that one should first check for the possibility of the benzylic structure in the molecule. By similar reasoning a $C_{7}H_{7}^{+}$ ion having a reduced intensity in an unknown spectrum would probably not arise from the $C_6H_5CH_2$ - group, but from a more complex structure through a more drastic cleavage or rearrangement.

The usefulness of this probability concept is admittedly in doubt, because the 4000 spectra cataloged, although a large number on the basis of known collections of mass spectra, are still only a small percentage of the total number of organic compounds in the literature.

The distribution of structural types naturally depends somewhat on the interests of the originating laboratory and company. Thus, the large number of $C_6H_3OCl_3^+$ ions tabulated at m/e 196 resulted from the study of a sizable group of trichlorophenoxy ester derivatives. However, the compounds of this file generally represent a broad range of chemistry, and a real attempt has been made to include also all classes of compounds whose spectra have been reported in the literature - e.g., steroids and hydrocarbons of high molecular weight. In general, the statistical data are probably meaningful for the "simpler" organic compounds, but of little value for more complex or specialized classes of organic compounds, such as plant pigments, perfluoroaromatic compounds, sugars, etc. Thus, the distribution of relative abundances should be given weight in structure indications generally only where quite a number of compounds of that type were available. For example, as cited above, the data for $C_{\pi}H_{\pi}^{+}$ ions indicate that structures containing the benzyl ion have a high probability of giving this m/e as the highest peak in the spectrum. However, the absence of a large number of entries for $C_{7}H_{7}S^{+}$ at m/e 123 does not indicate that the corresponding thiobenzyl($HSC_6H_4CH_2$ -) compounds could not give a very abundant m/e 123 peak.

When several structural types are listed for the same formula on one line, they are generally in decreasing order of importance.

SYMBOLS

+ indicates that this bond is cleaved to form the ion. The group or groups lost, if indicated, are usually designated by general symbols such as R (alkyl) or Y (functional group).

 $Ph \neq R \neq H$ indicates the loss of the R group with rearrangement of one of its hydrogens to the resulting ion (here Ph-H⁺). This should be followed by "(rearr.)." The β -hydrogen atom is usually the one rearranged (7), so that the lack of a β -hydrogen in the compound should greatly reduce the probability of the rearrangement. A double cleavage such as $CH_3COO + R + H_2$ indicates the rearrangement of two hydrogen atoms, although in this case the second hydrogen atom need not come from the carbon atom *beta* to the bond cleaved (10).

 \neq indicates two bonds are cleaved (usually *not* the cleavage of a double bond).

RC (R')(R'') + indicates that the bond broken is to the carbon atom and not to R' or R".

 $(ABC) \neq Y$ means that Y might be substituted on A, B, or C.

"Base" means the highest peak in the spectrum - i.e., the most abundant ion.

A semicolon signifies that the classifications following it are significantly less abundant than the preceding ones. Above m/e 218 in the table the semicolon means that the classifications following it were only found as less intense than the fifth most abundant peak.

 ΣR indicates a summation of the alkyl groups - i.e., if $R = CH_3$, $\mathbf{R'} = \mathbf{C_2}\mathbf{H_5}$, and $\mathbf{R''} = \mathbf{H}$, then $\Sigma \mathbf{R} = \mathbf{C_3}\mathbf{H_9}$.

 $(C_6 F_8)$. Parentheses around a formula indicate a significant ion (especially for exact mass determination) which was not in the card file, and is therefore not included in the numerical tabulation.

ABBREVIATIONS

aliph.	aliphatic
arom.	aromatic
cleav.	cleavage
corresp.	corresponding
cpd.	compound
dvts.	derivatives
esp.	especially
gp.	group
h.c.	hydrocarbon
mult.	multiple
Ph	phenyl group
P.I.D. Ions	parent, isotopic, or doubly charged ions
R	hydrocarbon moiety (generally aliphatic, but can be
a hydrogen atom)	
R*	hydrocarbon moiety containing an electronegative
group as X, -NO	$_{2}$, -CN, -COOR, -COR, etc. (see Y* below)
	In Mass Spectral Correlations; McLafferty, F.;

Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

rearr.	rearrangement (usually of a H atom. If none is in-
dicated, the lo	ocation of the rearranged H atom is not definite).
satd.	saturated
substd.	substituted
unsatd.	unsaturated
Х	any halogen atom
Y	a functional group
Υn	one or more Y groups
Y*	an electronegative functional group, as X , $-NO_2$,
-CN, -COOR,	-COR, $-SO_2X$, $-C \equiv CH$, R*, $-NCS$, $-COX$, etc.
\mathbf{Z}	another functional group or combination of several
Y groups.	

CONCLUSIONS

Despite the fact that this file cannot possibly contain a representative number of all possible types of organic molecules, the prevalence of certain entries is of interest. A total of 15,746 peaks from the spectra of 4036 compounds were examined, and an assignment of structure and mechanism was attempted for each of these. The most entries are found at m/e 43, 41, 57, and 55, representing 5.8, 5.5, 3.5, and 2.6%, respectively, of the total entries for the three most abundant ions. Similarly, the most abundant empirical formulas found were $C_3 H_5^+$, $C_3 H_7^+$, $C_4 H_9^+$, $C_4 H_7^+$, $C_2 H_3 O^+$, and $C_7 H_7^+$, representing 5.3, 4.0, 3.0, 2.4, 1.5, and 1.5%, respectively, of the total number of entries for the three most abundant ions. Figures A, B, and C represent the number of entries which were found for the first, second, and third most abundant ions, respectively, at each nominal mass number.

The number of peaks to which no appreciable structural significance could be assigned ("other unclassified") was gratifyingly low. Separation between peaks classified as P.I.D. and "other unclassified" ions was not made for all m/e below m/e 103, but these types together represented only 11% of the total, so that the "unclassified" alone should be under 5%. At the higher mass numbers the "other unclassified" ions were 9% of the total. The fact that such a high percentage of the major ions in this wide variety of mass spectra are explainable indicates the potential of the method for molecular structure determination, and the significant progress that has been made within the last decade on the fundamentals of ion decomposition paths.

Space has been left in the table, especially at the higher m/e, for the addition of correlations found subsequently by the reader. This, of course, will increase the usefulness of the tabulation in the areas of the reader's particular chemical interests. The author would appreciate it if any such additional correlations could be forwarded for inclusion in a possible future edition of the table. To reiterate, it would be very helpful to hear of alternative explanations of mechanisms for the data shown or of any errors found.

Often the neutral fragment lost is of as much structural significance as the ion formed. Thus it should be possible to construct a similar tabulation using the mass of the difference between the abundant ion

Figure 1. Number of spectra in which ions of a particular m/e were

the most abundant

Figure 2. Number of spectra in which ions of a particular m/e were

second most abundant

10

INTRODUCTION

Figure 3. Number of spectra in which ions of a particular m/e were

third most abundant

found and the molecular ion. With such a table, functional groups which ordinarily do not retain the positive charge on cleavage of the molecular ion, such as the methyl group, halogen atoms, etc., could be classified and more easily identified. Such correlations fail, of course, when the abundant ion is formed from a fragment ion instead of the molecular ion, but the incidence of such cases would be of interest. Preparing such tabulations with the file cards used in the present study should be simplified because degradation paths have already been assigned. However, the preparation of such a correlation should await an assessment of the usefulness of the present tabulation.

In the past few years, the markedly increased use of mass spectrometry in the solution of complex problems in molecular structure has been most gratifying. It is hoped that this tabulation will encourage this use by directly aiding both the neophyte and expert in structure identification. Possibly of greater importance, however, is the demonstration of the high percentage of the abundant ions in mass spectra to which meaningful structure assignments can be made, demonstrating the maturity of the method and the unique usefulness of its molecular structure information.

ACKNOWLEDGMENT

This paper embodies efforts and ideas of such a large number of personnel of the Mass Spectrometry Section of the Chemical Physics Research Laboratory of The Dow Chemical Co. That it should be called the "Dow Table" of prominent ions in mass spectra. The structure and principles of this table evolved from invaluable discussions with R.S. Gohlke over a period of several years. Among others whose contributions are gratefully acknowledged are Jo Ann Gilpin, Joanne M. Rupprecht, Marjorie A. Eash, William T. Shelburg, and Eugene O. Camehl. The author is also happy to thank Norman Wright and Victor J. Caldecourt for inspiration and counsel, Priscilla A. Turner for stenographic assistance, and Charlotte M. Cripps for tabulations.

Publication Date: January 1, 1963 | doi: 10.1021/ba-1963-0040.pr001

LITERATURE CITED

- (1) Beynon, J. H., "Advances in Mass Spectrometry," p. 328, Pergamon Press, London, 1959.
- (2) Beynon, J. H., "Mass Spectrometry and Its Applications to Organic Chemistry," Elsevier, Amsterdam, 1960.
- (3) Beynon, J. H., Saunders, R. A., Williams, A. E., Anal. Chem., <u>33</u>, 221 (1961).
- (4) Colthup, N. B., J. Opt. Soc. Am., <u>40</u>, 397 (1950).
- (5) Doederer, G. C., Olsen, R. S., *Appl. Spectroscopy*, <u>16</u>, 25 (1962).
- (6) Kuentzel, L. E., Anal. Chem., <u>23</u>, 1413 (1951).
- (7) McLafferty, F. W., *Ibid.*, <u>31</u>, 82 (1959).
- (8) McLafferty, F. W., "Mass Spectrometry," in "Determination of Organic Structures by Physical Methods," F. C. Nachod and W. D. Phillips, eds., Academic Press, New York, 1962.
- (9) McLafferty, F. W., Gohlke, R. S., Anal. Chem., <u>31</u>, 1160 (1959).
- (10) McLafferty, F. W., Hamming, M. C., Chem. and Ind. (London) <u>1958</u>, 1366.
- (11) Mass Spectral Data File, Committee E-14, American Society for Testing Materials, 1916 Race St., Philadelphia, Pa.
- (12) Rylander, P. N., Meyerson, Seymour, Grubb, Henry, J. Am. Chem. Soc., 79, 8482 (1957).
- (13) Shapiro, I., Ditter, J. F., J. Chem. Phys., <u>26</u>, 798 (1957).
- (14) Von Hoehne, J., Users' Clinic, Consolidated Electrodynamics Corp., New Orleans, June 1958.
- (15) Zemany, P. D., Anal. Chem., 22, 920 (1950).

Correlations of Mass Spectral Data

<u>m/e</u>	Formula	Structural Significance*	<u>1† 2</u>	tive F	robat <u>4</u>	<u>5</u>	<u>6</u>	<u>Total</u>
1.0078	н		1				1	2
2.0156	H ₂	P.I.D2				1	1	4
3.								0
4.		P.I.D1						1
5.								0
6.								0
7.								0
8.								0
9.								0
10.								0
11.0093	В						1	1
12.0000	С	Small molecules	2	1	4	4	5	16
13.0018	СН	Small molecules			2	3		5

* For meaning of symbols, see page 7 of text; for abbrevations, see page 7.

† Number of spectra in which the most abundant ion has this m/e.

	T anuar 1a	Structural		Rel	ative	Pro	babi	lity		
<u>m/e</u>	Formula	Significance	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7 To</u>	otal
14.0031	N			2	1	1	2	3		9
14.0156	CH ₂	Unclassified		T	I	3 1	3	2		15 3
		Total		3	2	5	5	12		27
15.0235	СН3	Hydrocarbons		1	_					1
		R + Y (Y=-COOR) (Y=-COR)		1 5	3 6	1 2				ъ 13
		(Y=-OR)			4	10				14
		$(Y = -NR_2)$ $(Y = X, -NO_2)$ $(Y = Hap$	1	1	2	4 2				5 5
		(I = -HgR, -N=NR)	2		-					2
		(Y=-OCOR*) Other compounds	1	1	ъ 2	4 5				8
		P.I.D. and unclassified			_2	_1				3
		Total	4	9	24	29				66
15.9949	ο			1	3	1	3			8
16.0187	H_2N	P. I. D. and unclassified	1	1		3	3 1			2
		Total	1	2	3	4	7			17
17 0097	чо		1	1	2		1			5
17.0265	H ₃ N		î	3	-	4	-			8
	-	P.I.D. and unclassified	1	-	-	1				$\frac{2}{15}$
		Total	3	4	2	5	1			10
18.0106 18.0344	H₂O H₄N	(Data not meaningful, as no rigorous effort to remove H_2O from most samples. H_2O also from hydrates, thermal decomp.) Total	<u>19</u> 19	<u>26</u> 26	<u>21</u> 21					<u>66</u> 66
										•
18.9984 19.0184	F						2	1	1 3	2 5
10.0104	11 ₃ 0	P.I.D. and unclassified		1		1	_	_	_	2
		Total		ī		1	2	1	4	9
20.		P.I.D. and unclassified	1	1			1	2		5
21.		P.I.D. and unclassified			1					1
22.		P.I.D. and unclassified		1		1				2

<u>Formula</u>

Structural <u>Significance</u>

<u>m/e</u>
23.0264
24.0000 24.0343
25.0078 25.0421
26.0031 26.0156 26.0499
27.0235

23.0264	$\mathbf{B_2}\mathbf{H}$						1			1
24.0000 24.0343	$C_2 B_2 H_2$	Highly unsatd.h.c. Total			$\frac{2}{\frac{1}{3}}$		ī	1 - 1	1 1	4 <u>1</u> 5
25.0078 25.0421	C ₂ H B.H.	Highly unsatd. h.c.		1	2	2 1				5 1
	- 2 3	P.I.D. and unclassified Total		ī	<u>1</u> 3	3				$\frac{1}{7}$
26.0031 26.0156 26.0499	$CN C_2 H_2 B_2 H_1$	$R \neq CN, RCHN_2$	1	2 1	5 2	1 6				8 9 1
		P.I.D. and unclassified Total	$\frac{1}{2}$	3	7	<u>2</u> 9				$\frac{3}{21}$
27.0235	$C_2 H_3$	$CH_2 = CH + R$ Other h. c.		2 2	5					2 7
		$CH_2 = CH + COR, CH_2 = CH + COOR$	1	5						6
		$CH_2 = CH + X, CH_2 =$ CH + COOR	1	2						3
		$X \neq CH, CH \neq HY$ (Y= -COOR', X, etc.) Other compounds	2 1	8 16	2					10 19
27.0406	CH_4B	CH ₃ BH-, higher boron		2	5					8
27.0577	$\mathbf{B}_{2}\mathbf{H}_{5}$	D L D and unalogoified	9	2	1					2
		P.I.D. and unclassified	-	-	-					_
		Total	7	43	13					63
27.9949	CO	Lactones (could be C ₂ H ₄) Other (also possible		4	2					6
28.0061	N_2	from action of O_2 on electron filament) (N_2 gas impurity is possible, although eliminated where		1	2					3
29 0197	CH N (or	recognizable)	2	1						3
20.0101	$C_{2}H_{4}$	Alkyl amines, esp.	2	8	20					30
28.0313	C, H,	Satd. h. c.	2	1	20					3
	2 4	Dialkylaromatic h.c.		3	1					4
		Other compounds Unclassified (C H CO		2	5					1
		or CH ₂ N	2 0	20	33					73
		P.I.D. and unclassified	3	3	_6					12
		Total In Mass Spectral Correlations:	29 McI	43	69 69					141
	Advances in O	Chemistry; American Chemical S	ocie	ty: Wa	shing	ton, I	DC, 19	963.		

7 Total

 $\frac{\text{Relative Probability}}{\underline{2} \ \underline{3} \ \underline{4} \ \underline{5} \ \underline{6}}$

1

			_	Relati	ve	
m/e	Formula	Structural Significance	1 <u>P</u>	robabi	lity	Total
			1	4	5	<u>10tai</u>
29.0027	СНО	$\mathbf{R} \neq \mathbf{CHO} (\mathbf{R} < \mathbf{C})$	4	2	2	8
	••	$RO \rightarrow CHO$	-	4	2	6
		Epoxides		1	3	4
		Mixed ROR, ROH	1	8	23	32
29.0391	$C_2 H_5$	$C_2H_5 + Y$ (Y = -CHRR', -CRR'R')		1	5	6
		$(\mathbf{Y} = -\mathbf{C}\mathbf{H}_2\mathbf{P}\mathbf{h}\mathbf{R})$		1	2	3
		(Y = -COUR)	T	10	0 1	10
		$(\mathbf{Y} - \mathbf{COR})$	1	4	4	9
		(Y = -SR or -SSR)	3	2	1	6
		(Y = -OR)	5	2	5	12
		(Y = -OCOR*)	15	5	3	23
		(Y= X)		2	1	3
		$(Y = -ONO, -CX_3, -ONO)$	2'			
		-HgR, -CNS, -NO ₂ , etc	.) 5	2	3	10
		Satd. h.c.	17	1 5	2 2 2	4
		D D and unclassified	2	9	10	21
		F.I.D. and unclassified	45	=	104	
		Total	40	99	104	200
29 9826	HSi	HSi⊥R	1			1
29,9980	NO	Aliph, and arom, nitro cpds.	-	4	3	7
		$R_2N + NO$ (nitrosamines)	1	1	2	4
		$RONO$, $RONO_2$, etc.	2	1	1	4
30.0344	CH_4N	$R + CH_2 NH_2$	26	7	2	35
		$R + CH_2NH + R' + H (rearr.)$	3	10	6 1	19
		Combination of above $\mathbf{D} \in \mathbf{CH} \setminus \mathbf{M} \in (\mathbf{P} \setminus \{\mathbf{H}\})$ (non m.)		5 5	5	10
		$R + CH_2 N = (R + H)$ (rearr.) BCH(CH) NH cnds ² (m/o 44 is		5	J	10
		base peak) $(m/e m b)$		2	3	5
		$RCO \neq NHCH_2 \neq R'$ (rearr.)	4	2	2	8
		P.I.D. and unclassified	6	2	7	15
		Total	43	39	32	114
30.9984	CF			4	17	21
31.0184	CH3O	$R + CH_2OH$ (many of these cpds.				
		have other possible sources of	10	14	10	40
		m/e 31)	18	14	10	40
		ethoxides; dioxanes, etc.)	y 6	6	5	17
		0 				
		$Y-M \neq OCH_2 \neq R' (rearr.)(M=C,$				
		$S, P, AS; I = RO-, RNH-, RCO-, B-Dh_ etc.)$	3	6		9
		$HCO \neq OCH_{\star} \neq R$ (rearr.) (formate	s) 5	v	1	6
		$CH_3O + OR^2$ $CH_3O + CONH_2$,	2		2
		Cpds. having more abundant		-		
		$C_n H_{2n+1} O$ peak (mainly m/e 59)		4	17	21
		P.I.D. and unclassified	7	4	9	20
		Total	39	43	53	135

mla	Formula	Structural	R	elati	ve P	robal	oility	
<u>m/e</u>	rormula	Significance	1	2	3	4	<u>5</u>	<u>6</u> Total
31.9721 31.9898	S O ₂	$(O_2 \text{ gas impurity} $ common, removed		3	1	2	1	7
32.0262	CH₄O	where recognized)			1	2		3
	Also: C	CHF, CH ₆ N(?), PH P.I.D. and unclassified	4	2		5	4	9 6
		Total	4	5	2	9	5	25
33.0140	$CH_2 F$	R∔CH₂F Other (rearr.)	1	2 1	6	4		3 12 1 6
33.0340	CH₅O	HOCH ₂ \ddagger CH ₂ OR \ddagger H ₂ (rearr.), HOCH ₂ \ddagger CHRR' \ddagger H ₂ (rearr.)?		2	1	1		15
	Also: H	$H_2 P (PH_3), HS (H_2 S)$		1	1			2
		P.I.D. and unclassified Total	$\frac{1}{2}$	6	8	2 7		$\frac{3}{5}$ $\frac{3}{28}$
33.9877	H ₂ S	$\begin{array}{l} \mathbf{R} \stackrel{1}{+} \mathbf{CS-NH}_2 \ (\mathbf{R} = \operatorname{aromatic});\\ \mathbf{C}_2 \ \mathbf{H}_5 \mathrm{SH}\\ \mathbf{P.I. \ D. \ and \ unclassified}\\ & \text{Total} \end{array}$	2 2	$\frac{1}{1}$	$\frac{1}{\frac{1}{2}}$	$\frac{1}{2}$	$\frac{1}{1}$	$\begin{array}{ccc}1&3\\&6\\\hline1&9\end{array}$
34.9689	Cl	Small molecule, C1 mainly on -CO-, S, P, -CN,		1	2		9	4 10
34.9955	H ₃ S	$CH_{3}SCH_{3}$ P.I.D. and unclassified Total		$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{1}$	1 1 4	$ \begin{array}{r} 1\\ 1\\ \frac{1}{5}\\ \overline{5}\\ 16\end{array} $
35.9767	HC1	Cpds. with "active" Cl (and chlorides, etc.). May be HCl from thermal de- comp. P.I.D. and unclassified Total	4	5 5	4 1 5	7 2 9		20 <u>3</u> 23
37.0078	С ₃ Н	Highly unsatd. or halogen- ated small molecules (h. c., furans, etc.) P.I.D. and unclassified Total	$\frac{1}{1}$		1 1	2 2 4	5	$7 \frac{14}{4}$ $\overline{7} \frac{4}{18}$

m la	Formula	Structural	R	elativ	e Pro	babil	ity	
<u>m/e</u>	Formula	Significance	1	2	3	4	<u>5</u>	Total
38.0031 38.0156	C ₂ N C ₃ H ₂	RR'C=CR"-CN Highly unsatd., halogenat-		1	1	1		
		ed, etc. small molecules	5	0	٨	6		19
		P. I. D. and unclassified		1	3	3		7
		Total		4		$\frac{1}{10}$		$\frac{1}{22}$
		1000		-	Ū	10		
39.0109	C_2 HN	$C_3 H_5 CN (C_3 H_3?)$			3			3
39.0235	C ₃ H ₃	$HC \equiv C - CH_2 + Y (Y = X, -H)$	3	1 5	6			4
		Cyclic olefins, acety-	Z	อ	0			13
		lenic h.c.		5	10			15
		Olefins	•	1	11			12
		$H_2 \neq C_3 H_3 \neq COR$ C_H.Y. C.H.Y.	6	1	8			15
		$RC_{3}H_{4}Y (Y = X, O, S)$		14	10			24
		Furans Other beterocyclics	2	2	8			12
		(pyridines ($C_2 HN$?), etc.))	1	15			16
		tetra-subst)			8			8
		Others		1	4			5
		Total	13	31	83			127
40.0187	$C_2 H_2 N$	$R \neq CH_2CN, R \neq CH=CH-$ $N \neq R'(cyclic), etc.$		1	3	5	1	10
40.0313	$C_{_3}H_{_4}$	Dienes, acetylenes,		•	Ũ		-	10
		cyclic olefins, etc. RC, H, Y (Y=-Cl, -COR,	2	2		4	8	16
		$S; R=H, -CH_3)$			1	1	3	5
	Also: O	$CBH, C_2O (C_3O_2)$	2					2
		P.I.D. and unclassified Total	$\frac{3}{7}$	3	4	$\frac{1}{11}$	$\frac{1}{13}$	$\frac{5}{38}$
41.0027 41.0265	C₂ HO C₂ HAN	Nitriles, RCN	4	3	1 4			1 11
	0 2 1 3 1 4	Pyrroles	-	2	-			2
41.0391	$C_3 H_5$	Correction Correction Y (Y=R, -COR)	1	٨	1			ß
		CH.=CH-CH + R	12	5	2			19
		$CH_{2} = C(CH_{2}) + R$	3	3	ī			7
		CH ₃ -CH=CH ∔ R	3	2	9			14
		Other h.c.	27	38	95			160
		upus. with n.c. moieties	24	105	231			900

		Characteriza 1	_F	lelati	ve	
m/e	Formula	Structural	$\frac{Pr}{1}$	obabi	lity	Trata 1
		Significance	1	2	<u>3</u>	Total
		$C_3 H_5 + Y$ (Y= -COR; -CN)	10 `	9	7	26
		$(1 = -OR, -BR, -NR_{o})$	11	1	3	15
		$(Y = -OCOR^*,$			_	
		-NRCOR*) (V_ V)	3	1	4	85
41 0562	C. H. B	$(I = \Lambda)$ (CH) B- higher boranes	13			13
11.0002	02 1162	P.I.D. and unclassified	1		2	3
		Total	117	173	366	656
		1000		110	000	
42.0106	$C_2 H_2 O$	H + CH ₂ CO + Br	1			1
42.0343	$C_2 H_4 N$	Ethylenimines, CH ₃ CH=N 1	3	1		4
42.0403	C3 ¹¹ 6	$nronvl \neq R \neq H$ (rearrs.)	2	5	1	8
		Other h. c.	1	4	5	10
		Other compounds	3	5	1	9
	C ₃ H ₆ ,					
	C_2 H ₂ O, o			10		70
	$C_2 H_4 N$	Unclassified D. I. D. and other unclose	17	19	34	70
		ified	2			2
		Total		24	41	104
		Iotai	20	44	11	101
43,0058	CHNO	R-O I CONH I H.				
	omito	$R_N \neq CONH \neq H(?)$	4		1	5
43.0184	C ₂ H ₃ O	CH ₃ CO + R	30	4	14	48
	-	$CH_{3}CO + OR$	36	7	11	54
		$CH_3CO + NR_2$	2	11	17	24
		Other satd BOH BOB	4	11	4	15
		mixed	5	7	15	27
		CH, =CHO + R		2	3	5
		Other		1	2	3
43.0296	CH ₃ N ₂	$CH_{3}N=N+CH_{3}$	•	1		1
43.0421	$C_2 H_5 N$	Cyclic amines	2 2			2 2
43.0547	C.H.	(CH) CH + C _a H _{an}	29	8		37
10.0011	03117	Other (CH _a) ₂ CH $\stackrel{1}{\leftarrow}$ CH $\stackrel{1}{\leftarrow}$ R,	20	Ŭ		•••
		$(CH_3)_2CH + RY$	31	20	20	71
		$CH_3CH_2CH_2 + CHRR',$				
		+ CRR'R" (branched)	9	3	1	13
		$CH_3CH_2CH_2 + K (K=$	9	1	1	4
		Other CH, CH, CH, L	4	T	T	т
		$C_n H_{2n+1}$	43	33	20	96
		Cpds. with large satd.				
		h.c. groups	26	82	80	188

<u>m/e</u>	<u>Formula</u>	Structural Significance	<u>P</u> : 1	Relati robab <u>2</u>	ive <u>ility</u> <u>3</u>	Total
43. 0547	C ₃ H ₇ (Cor		9 5 4 10 4 5 2 13 279	4 1 4 5 <u>9</u> 210	$ 1 \\ 4 \\ 2 \\ 3 \\ 5 \\ 203 $	13 2 6 1 8 16 12 5 2 27 692
43.9898 44.0136 44.0262 44.0499	CO2 CH2NO C2H4O C2H4N	Decomposition, as CO_3^2 salts R* $\ddagger COO \ddagger H$ (or $\ddagger R'$)? H ₂ NCO $\ddagger R$, H ₂ NCO $\ddagger OR$ OCH-CH ₂ $\ddagger R \ddagger H$ (rearr.) CH ₂ =CHO $\ddagger R \ddagger H$ (rearr.) Oxiranes, dioxalanes Other H ₂ NCH(CH ₃) $\ddagger R$ R $\ddagger CH(CH_3) \ddagger R$ R $\ddagger CH(CH_3) H R' \ddagger H$ (rearr.) CH ₃ NHCH ₂ $\ddagger R$ R $\ddagger CH_2 N$ (CH ₃) $\ddagger R' \ddagger H$ (rearr.) (CH ₃) ₂ N $\ddagger COR$ Cpds. having a more abundant $C_n H_{2n} + 1N$ peak Other P. I. D. and unclassified	$ \begin{array}{c} 2 \\ 3 \\ 8 \\ 4 \\ 1 \\ 2 \\ 10 \\ 3 \\ 5 \\ 1 \\ 17 \\ 2 \\ 6 \\ 6 \\ 70 \\ 70 \\ $	$ \begin{array}{r} 4 \\ 7 \\ 2 \\ 1 \\ 3 \\ 6 \\ 1 \\ 1 \\ 7 \\ \overline{30} \\ 40 \\ \end{array} $	2 4 1 1 2 4 9 1 6 31	$ \begin{array}{r} 4 \\ 11 \\ 16 \\ 7 \\ 3 \\ 5 \\ 8 \\ 11 \\ 4 \\ 5 \\ 8 \\ 18 \\ 3 \\ 16 \\ 7 \\ 15 \\ 141 \\ \end{array} $
44.9799 44.9976 45.0060 45.0140 45.0340	CHS CHO 2 CH ₅ Si C 2 H 2 F C 2 H 5 O	Total Thiacycloalkane or R-S-R'Y Thiophene dvts. HOOC \neq R* CH ₃ SiH ₂ -? (by rearr.) C ₂ H ₂ F \neq X, C ₂ H ₂ F \neq HX ₂ HOCH ₂ CH ₂ \neq Y (Y=-OR, -NR ₂ ,-SF CH ₃ CH(OH) \neq R CH ₃ CH (OH) \neq COOR, CH ₃ OCH ₂ \neq R R \neq CH (CH ₃)O \neq R' \neq H (rearr.) R \neq CH (CH ₃)O \neq R' \neq H (rearr.) R \neq CH (CH ₃)O \neq COCHY \neq H (rearr.) (Y=H or R*) RO \neq CH ₂ CH ₂ O \neq COR* (rearr.), PhO \neq CH ₂ CH ₂ O \neq C-CHR* \neq H (rearr.) etc.	1 2 1 10 22 4 11 9 3 7	40 4 7 1 5 7 10 2 4 3 4	31 10 11 3 1 2 5 2 3 5 1 2	141 15 11 12 2 8 22 34 4 16 18 7

,	- 1	Structural	Re	lative	Prob	abili	y	
<u>m/e</u>	Formula	Significance	1	2	3	4	<u>5</u>	<u>Fotal</u>
45.0340	$C_2 H_5 O$	(Cont'd.) Cpds. having a more		_				10
45.0578	C_H_N	abundant $C_n H_{2n+1}$ O peak Others $(H_{\circ}C)_{\circ} N + CH_{\circ} Ph (Y) - OH$	6	7 8	6 5			13 19
	2 7	(rearr.) $(m/e 44$ is larger)		14	3			17
		P.I.D. and unclassified Total	$\frac{10}{86}$	$\frac{5}{81}$	$\frac{1}{60}$			16 227
45.9877 45.9929	CH₂S O₂N	Mainly cyclic sulfides RONO ₂ , CH_3NO_2	3 3	1	1	4		8 4
46.0296	C ₂ H ₃ F			1		1	1	12
40.0410		P.I.D. and unclassified	_2	_4	_2	<u>1</u>	1	<u>10</u>
		Total	8	6	3	6	2	25
46.9687	OP	POCl ₃				9	1	1
46.9689	CCI H. OSi	C, H.Si(CH,), OH (rearr.)			2	2 1	0	12
46.9955	Сн _з S	$HSCH_2 + R$ $H_3CS + R$ BCH_S-B' (rearr.) etc.	4 1 1	4	2 2 6	2 4 3	4 2 5	16 9 17
47.0132	CH_3O_2	$\frac{R + CH_2 S - R}{(rearr.)?} (C_2 H_2 CH_3)_2$	1	2	Ū	1	2	6
47.0296	$C_2 H_4 F$	$C_2 H_4 F + R;$ $CF_3 CHClCF_2 CH_2 OH$	3		1	1		5
47.0496	C_2H_7O	CH ₃ OCH ₂ + CHROH, HOCH ₂ CHROH (mult.	U	1	-	-	9	વ
47.0607	H₃B₄	$B_4 H_3 + H_7, B_4 H_3 + BH_8$		1		1	ĩ	2
		P.I.D. and unclassified Total	10	$\frac{1}{10}$	$\frac{1}{14}$	$\frac{1}{16}$	$\frac{1}{26}$	$\frac{4}{76}$
47.9670	OS	SO_n , SOX_n , etc.		3	1		1	5
47.9767	CHC1	DhOSi(CU) (noonn)	1	1	1		4	7
47.9931 48.0000	H₄ USI C₄	HC = CC = CH		-		1		1
48.0034	CH₄S	HSCHRCH ₂ CHO, $R \neq SCH_2 \neq R',$ HSCH ₂ $\neq CH_2$ OH (mult.			_	_		_
48,0685	H.B.	rearrs.) B. H. 4 H.	1 1		3	1		5 1
10.0000	4~4	P.I.D. and unclassified		_2		_		$\frac{3}{3}$
		Total	3	7	5	2	6	23

m/e	Formula	Structural Significance		Rel	ative	_	
			1	2	$\frac{3}{3}$	4	Total
				_			
48.9845	CH ₂ Cl	$ClCH_2 + R$	5	7	2	7	21
		C1 + CHC1 + R + H, C1 + CC1 + R + H (rearrs.)		3	1	1	5
49.0061	BF ₂	BF ³	1		_	-	1
49.0078 49.0763	С₄ Н Ң. В,	$HC \equiv CC \equiv H, HC \equiv CCH = CH_2$ B, H, $\stackrel{1}{\rightarrow} H_3$		1		1	2
	54	P.I.D. and unclassified	_		1	1	2
		Total	6	12	4	10	32
49.9923	CH 3CI	$CH_2Cl + COO + H,$	9				9
49.9968	CF_2	$F_2 YCY'$ (Y or Y' = -X, -CN,	4				4
50 0031	CN	$-CX_3$, $-COR$)		1	4	7	12
50.0031	C3N	(Y = -X, -CN)		1	1	1	3
50.0156	$C_4 H_2$	Unsatd. alkynes, Ph-Y* Pyridine-Y dyts. (Y= H Y*)			3	10	13
		$(C_3N?)$				3	3
50.0841	$H_6 B_4$	P.I.D. and unclassified	2				2
		Total	4	2	8	21	35
51.0046	CHF ₂	CHF ₂ { R	5	2			7
51 0100		$CXF_2 + R, CF_2 = CRY (rearrs.)$	1	1	2		4
51.0235	$C_3 HN C_4 H_3$	Alkyne dyts.	2	3	1		4
		Ph-Y* Pyridine-Y* dyts. (C.HN?)		1	24 6		25 7
		P.I.D. and unclassified	_1	2	2		5
		Total	9	10	35		54
52.0187	C_3H_2N	NC-CH=CH $+$ R, etc.	2	1	1		4
52.0313	$C_4 H_4$	Alkynes, $Ph-Y$, $pyridine-Y$ (C, H, N?)	1	2	3	1	7
		P.I.D. and unclassified	_2	_1		_1	6
		Total	5	4	6	2	17
		,					
53.0265	C ₃ H ₃ N	$NC-C_2H_3 \neq HCN,$	9	1			2
53.0391	C₄ H₅	Alkynes, dienes	4	5	6		11
		$C_4 H_5 \neq HX_2$, furans, etc.	1	4	2		6 1
		In Mass Spetal Correlations: McLafferty.		10			$\frac{1}{21}$

Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

<u>m/e</u>	<u>Formula</u>	Structural Significance	н <u>Рт</u> <u>1</u>	Relativ obabi 2	ve <u>lity</u> <u>3</u>	Total
53.9980 54.0106 54.0343	$C_2 ON C_3 H_2 O C_3 H_4 N$	NC-CO $\frac{1}{7}$ CH ₃ Maleic anhydride NCCH ₂ CH ₂ $\frac{1}{7}$ Y (Y= -OR, -CH ₂ X,	1	1		1 1
E4 0400	A H	-SR, X, H, -RCN)	4	6	5	15
54.0469	C₄ H ₆	Alkynes, cyclohexenes, $C_4 H_6 \neq SO_2$, $H_2N (H) \neq C_4 H_6 \neq (H) CHOH$ P.I.D. and unclassified Total	$3 \\ \frac{3}{11}$	2 2 10	$\frac{1}{7}$	5 6 28
55.0184	C3H3O	H₂ C=CHCO ↓ R	11		4	15
		4-R-cyclohexanones, others, etc.	5		1	6
55.0421	C ₃ H ₅ N	Imidazolines	1	1		2
55.0547	C ₄ Π ₇	$H_{2}C=CHCH(CH_{3}) + R,$ $H_{2}C=C(C_{2}H_{5}) + R,$ $CH_{3}CH=CHCHCH_{2} + R,$	6	2	3	11
		C₂H₅CH=CH + R	10	7	7	24
		Other alkenes	7	4	6	17
		Cycloalkanes	26	28	19	73
		C H S OP	37	20	48	143
		$C H \stackrel{1}{\leftarrow} COR$	2	3	1	5
		C_{4} H_{7} H_{7} H_{7} H_{7}	3	1	2	6
55.0719	C, H, B	$C_2^{\dagger}H_5^{\prime}B(CH_3^{\prime})-$	1		1	2
		P.I.D. and unclassified	<u>N</u>	one		
		Total	111	107	92	310
56.0262	C ₃ H ₄ O			3	1	4
56.0500	C ₃ H ₆ N		3	1	1	5
56.0626	C ₄ H ₈	$CH_3 - (C_3H_4) \neq R \neq H$ (rearr.) (<i>m/e</i> 41 is also large) Other olefinic h.c. (<i>m/e</i> 41 is	3	1		4
		also large)	2	3	5	10
		Methylcyclopentyl h.c.	7	2	1	10
		Cyclohexanes, other cycloalkanes H $\frac{1}{4}$ CH ₂ C (CH ₃) ₂ $\frac{1}{4}$ R (m/e 57	4	2	4	6
		usually larger) H ÷ C. H CH (CH) ÷ R (m/e 57	1	16	4	21
		large) $(313) = 10^{-10} (313)^{-10} (317$	1	2	1	4
		$H \stackrel{1}{+} C_4 H_8 \stackrel{1}{+} Y$ (Y= -OR, -SR)	2	4	2	8
		(Y= -OCOR, -OCOR*)	4	10	8	22
		(Y= X)	2		1	3

P.I.D. and other unclassified In MassTotal ral Correlations; McLafferty, F.; 50 Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

 $R \stackrel{4}{+} C_4 H_8 \stackrel{4}{+} Y (R = C_2 H_5, C_3 H_7; Y = -SR, -OR, X, -OCOH)$ Cyclohexylamine cpds.

 C_4H_8 , C_3H_4O or C_3H_6N

unclassified

Others

mla	Formula	Structural	Relative	Probabi	<u>lity</u>	
mje	Formula	Significance	1	2	<u>3</u>	Total
57 0340	СНО	СНСОТВ	4	3		7
011.0040	031150	$C_{2}H_{2}CO + OR$	14	2	2	18
		$C_2 H_5 CO + NR_2$		_	1	1
		$HOC_3H_4 + R,$				
		$R \downarrow C_3 H_4 \rightarrow O \downarrow R' \downarrow H$				
		(rearr.), C ₃ H ₅ O † COR	8	2	2	12
		бсн, снсн, +х	2			2
		Mixed ROR, ROH	3 *	1	4	8
57.0704	$C_4 H_9$	$(CH_3)_3CCnH_{2n+1}$	19+4	3+0		26
		Other $(CH_3)_3C \neq$	12 + 13	7+1	8+ 2	43
		$C_2 H_5 CH (CH_3) + C_n H_2 n_{+1}$	4+1	3+2	0+2	12
		Other $C_2 H_5 CH (CH_3) +$	2+6	0+4	2+4	18
		Other $H_9C_4 + C_nH_{2n+1}$	27	32	11	70
		Other cpds. with satd. h.c.				
		moieties	37	9	15	61
		$C_4 H_9 \neq Y$ (Y= -CHRR',				
		-CRR'R'')	16+5	8+2	3+2	36
		$(\mathbf{Y} = -\mathbf{C} - \mathbf{C} = \mathbf{C})$	2	1	-	3
		(Y = -C - Ph)	4.4		1	1
		(Y = -COUR)	1+1		0+1	ა 1
		$(Y = -CONR_2)$	1.1	1	1.3	17
		$(\mathbf{Y} - \mathbf{N}\mathbf{R})$	0+1	-	1+0	3
		(Y = -SR or -SSR)	0+1		0+1	6
		(Y = -OR)	13+6	2+1	2+1	25
		(Y = -OCOR*)	8	5+1	1	15
		(Y = X)	4+5		0+1	10
		$(Y = -NO_2, -CNS,$				
		$-OSO_2 \tilde{R}, -BO_3 \tilde{R}_2$	2	1+1	1	5
		$Cycloalkyl-OH, -NH_2(C_4H_9?)$	8	2	2	12
		P.I.D. and unclassified		_2	4	10
		Total	193+49	84+13	61+1	7 417
			242	97	78	
58.0293	C_2H_4NO	$HCONHCH_2 + R,$		1	1	9
58 0419	СНО			T	T	4
20.0410	~ ₃ 11 ₆ (
		HCOCH (CH) \downarrow R \downarrow H)			
		(rearrs.)	1	6	2	9
		Other	3	6	12	21

* Added figure – e.g., +4 – indicates number of compounds in which an additional functional group could be aiding structural feature indicated as causing abundant $C_4H_9^+$ – e.g., $(CH_3)_3C\frac{1}{4}OR$.

<u>m /e</u>	<u>Formula</u>	Structural Significance	F Pr	Relativ obabil	•		
			1	2	<u>3</u>	Total	
58.0656	C ₃ H ₈ N	H ₂ NCH (C ₂ H ₅) \neq R, H ₂ NC (CH ₃) ₂ \neq R R \neq C (C ₂)NH \ddagger R' \ddagger H (rearr.) H ₃ CNHCH (CH ₃) \ddagger R, R \neq CH (CH ₃)N(CH ₃) $+$ R' \ddagger H	'3 •		2	5	
		(rearr.) (CH ₃) ₂ NCH ₂ \neq R	3 10			3 10	
		$C_2H_5 NCH_2 + R$ $R + CH_2 N (C_2H_5) + R' + H (Rearr.)$ $RCO + N (C_2H_5) CH_2 + R'$ Cods baying a more abundant	2 5 2	6 3	4	2 15 3	
		$C_nH_{2n+2}N$ peak Others	4	5 2	7	12 6	
		P.I.D. and unclassified	_1	6	_1	_8	
		Total	34	35	29	98	
58.9829	CNHS	SCN $+ C_2 H_4 + H$ (rearr.)		1	1	1	
59.0133	C_2H_3S $C_2H_3O_2$	CH.oCO ∔ R*	7	3	3	13	
59.0297	C ₃ H ₄ F		2	1	2	5	
59.0371	$C_2 H_5 NO$	$H_2NCOCH_2 + R + H;$	10			10	
59 0496	Сно	HON=CHCH ₂ \neq R \neq H (rearrs.)	10	2	2	10 17	
00.0400	031170	$HOCH(C_{3}H_{2}) \xrightarrow{+} R$	5	2	ĩ	6	
		$R + C(CH_3)_2 O' + R' + H,$					
		$R + CH(C_2 H_5)O + R' + H (rearrs.)$) 3	4		7	
		$C H_{3}OCH(CH_{3}) \neq R$	5	8	3	16	
		$C_2 H_5 OC H_2 + R$ $CH_0 OC H_0 CH_0 + OR$	3	1	1	5	
		$HOCH_2CH$ (CH ₃) + OR	6	1	_	7	
		HOCH(CH ₃)CH ₂ + OR		1	3	4	
		Cpds. having a more abundant		0	4		
		$C_n H_{2n+1} O$ peak Others	1	3	1	4	
59.0609	C ₂ H _• N ₂	CH_NHN(CH_)-	-	1	1	2	
59.0778	B₅H₄	$B_4 B^{10} H_5$, etc.	1		1	2	
		P.I.D. and unclassified	<u>12</u>		_4	_25	
		Total	75	40	23	138	
					_	-	
59.9767	C₂ HC1	R + CCl=CH + X	1		2	3	
00.0033	C ₂ H ₄ S	etc. $H \neq (SU_2 \Pi_4) \neq OR$,	4		1	5	
60.0211	C, H.O.	HOOCCH, +R+H (rearr.)	8	6	2	16	
	<u>∞</u> 4 - 2	$H \neq R \neq CH_2COO \neq R' \neq H$ (rearr.)	2		1	3	
00 0440	a	$R \neq OCH_2CH_2O \neq R?$		3		3	
ou. U449	C₂ H ₆ NO	$H_0CH_2CH_2NH \neq COR,$ $H_0NCH_0CH (OH) \neq R$			3	3	

m/e	Formula	Structural Significance		Rela	tive		
			<u>1</u>	2	3	<u>4</u>	Total
60.0857	$H_5B_5 + H_6$	B₄ B ¹⁰ ,					
	610.	$B_5 H_{11}$	1	E	c		1
		P.I.D. and unclassified					15
		Total	18	14	15		47
60.9845	C_2H_2Cl	$C_2 H_2 Cl_{\frac{1}{2}} Y_2 R, C_2 H_2 Cl_{\frac{1}{2}} Y$ (Y=X, NO ₂)	5	1	5		11
61.0009	CH₅OSi	$H_{3}C \stackrel{1}{\neq} Si(CH_{3})O \stackrel{1}{\neq} (CH_{3}) (Y) \stackrel{1}{\neq} H_{2}$ (Y = RCH_{2}COR)					
	.	(rearr.)?	•	2	1		3
61.0112	C_2H_5S	$CH_3 SCH_2 + R$ HSCH(CH ₃)-R,	8				8
		R + CH(CH ₃)S+R'+H (rearr)	3	4	2		9
		HSCH ₂ CH ₂ + OR	2	-	-		2
		$R-S-\overline{R}$ ($R>C_3$ or subst. C_2),	9	1	2		7
61,0289	С. Н. О.	(rearr.) etc. CH_COO \neq R \neq H_ (rearr.)	3	4	3		7
0110200	0211502	Other	1	3			4
61.0453	C ₃ H ₆ F	D1011	1	2			3
01.0935	$B_5 H_6 + B_4$ etc.	в н ₇ ,					
		$B_5 H_{11}$		1			1
		P.I.D. and unclassified	4	1	10		<u>0</u>
		Total	27	17	16		60
61.9475	P ₂			1			1
61.9923	C ₂ H ₃ C1	$Y + (C_2H_3CI) + Y' (Y = mainly)$ Cl, Y'= X, -OH, -COR, -CXPH)	4	5	3	3	15
62.0156	C_5H_2	$Ph-Y_3$ (Y= I, $-NO_2$, $-COOCH_3$, $-NHR$)	-	2	•	1	3
62.0190	$C_2 H_6 S$	$C_2H_5S \neq R \neq H$ (rearr.)?		_	1	2	3
62.0242	CH₄ O₂ N	$H_2 \operatorname{NCOO} + C_2 H_3 + H_2 \text{ (rearr.)}$		1		1	1
62.0367 62.1013	$C_2 H_6 O_2$ B_H_+ B	$C_2 H_5 OO \ddagger C_2 H_4 \ddagger H (rearr.)$ B ¹⁰ H				1	1
	etc. $D_5 m_7 + D_4$	~					_
		B_5H_9 , B_5H_{11}	ი	1	1	1	2 ∡
		r.i.D. and unclassified	-4	10			$\frac{1}{30}$
		IULAI		T O	~	~	~ ~

28

<u>m/e</u>	Formula	Structural Significance		Rela	tive bility		
			<u>1</u>	<u><u>P10ba</u></u>	<u>3</u>	<u>4</u>	Total
62.9358 62.9638 62.9705 62.9904	SiC1 COC1 CFS CH ₃ SO	C1 \neq SiC1 \neq (CH ₃) ₂ C1CO \neq Y (Y= X, -OR, -RX, etc.) CH ₃ -SO \neq CH ₃	2 1	2	1 3 1		1 7 1 1
63.0001	C₂H₄Cl	ClC ₂ H ₄ $\frac{1}{7}$ Y, (Y= X, -RX, -COR, -OCOR, P, S, etc.) Cl $\frac{1}{7}$ C ₂ H ₃ Cl $\frac{1}{7}$ R $\frac{1}{7}$ H, etc.	14	5	4		23
63.0046 63.0082 63.0234	$C_2 HF_2$ CH_3O_3 C_5H_3	(rearr.) $C_2HF_2 + X$ $H + R + OCOO + R + H_2$ (rearr.) $Y-Ph-Z_n$ (Y= -OH, Z= -X,-NO ₂ , -OH), $n = 1-3$	T	1	1 1 6		3 2 1 6
		Total	18	9	18		45
63.9619 64.0079	SO_2 C_2H_5Cl	$R \downarrow SO_2 \downarrow X, R \downarrow SO_2 \downarrow R',$ inorg. (S ₂ also possible) $CH_{\circ}CHCl \downarrow COO \downarrow H$ (rearr.)?	6		1 1		7 1
64.0124	$C_2H_2F_2$	$X \stackrel{+}{+} C_2 H_2 F_2 \stackrel{+}{+} Y (Y = R, X, -RX)$		1	5		6
64.0313	C₅H₄	Y-Ph-Z (Y= -OR, -NHR; Z= X, -COR, -CN; or YZ= fused heterocyclic ring, as in benzoxazole) P.I.D. and unclassified Total	1 <u>6</u> 13	6 7 14	2 <u>1</u> 10		9 <u>14</u> 39
65.0202 65.0391	C ₂ H ₃ F ₂ C ₅ H ₅	$C_5 H_6$ cpds. Subst. vinyl furans PhCH ₂ Y O_2 NPhY (Y= -OH, -CH ₃ ,-CHO)	4	3 2 1 3 4	2 1 3 2		7 4 2 6 6
		Z=X, H) P.I.D. and unclassified Total	_ <u>1</u> 5	$\frac{1}{14}$	$\frac{18}{4}$		18 <u>6</u> 49
65.9598 65.9673	H ₂ S ₂ CClF	H + R + SS + R' + H (rearr.)?	1	2	1 3	1	4 4
66.0469	С ₅ Н ₆	Y-Ph-Z (Y= -OR, -NHR, -SR; Z= mainly H, CH ₃) Methyl pyridines Other highly unsatd. h.c. P.I.D. and unclassified	1 _5	4 1 _1	2 1 1 1	3 3 1 2	9 5 3 9
		Total	7	8	9	10	34

Publication Date: January 1, 1963 | doi: 10.1021/ba-1963-0040.ch001

<u>m/e</u>	Formula	Structural Significance	1	Rel <u>Prob</u> 2	ative ability <u>3</u>	۲ <u>4</u>	Total
66.9654 66.9751	SOF CHC1F	FSO + (sulfuryl fluorides) FC1HC + R, also rearr.	3	2	3 4		3 9
07.0547	C ₅ H ₇	Alkynes, alkadienes, cyclo- alkenes, bicyclic h. c. R + Y ($R = cyclopenty$],	23	12	6		41
		Y= R', -OR') P.I.D. and unclassified Total	$\frac{4}{1}$	7 <u>4</u> 25	$\frac{21}{\frac{1}{35}}$		32 <u>6</u> 91
68.0136 68.0500 68.0626	C ₃ H ₂ ON C ₄ H ₆ N C ₅ H ₆	NCCH ₂ CO $\frac{1}{7}$ OR NCC ₃ H ₆ $\frac{1}{7}$ R Cyclopentane dvts. Cyclohexene dvts. Cyclohexanols, others P.I.D. and unclassified Total	4 4 <u>6</u> 14	2 2 1 6 5 18	1 1 6 2 2 12		3 3 12 5 8 <u>13</u> 44
68.9952	CF3	$F_3C \stackrel{f}{+}C=CY$ (vinylic) Other $CF_3 \stackrel{f}{+}$ CF, by rearr.	26	4 6 6	2 4 2	3 3 7	9 38 15
69.0340	C ₄ H ₅ O	$CH_{3}CH=CHCO \neq OR,$ $CH_{2} = C(CH_{3})CO \neq OR,$ $cyclopropyl-CO \neq R, 2- or$ 3-R-cyclohexanone $HOC_{4}H_{4} \neq R (pentynols)$	14 3	9		2	25 3
69.0704	C ₅ H ₉	C=C-C (C ₂) $\frac{1}{2}$ R, C ₃ H ₅ CH (CH ₃) $\frac{1}{2}$ R C ₂ -C=C-CH ₂ $\frac{1}{2}$ R Cyclopentyl $\frac{1}{2}$ R Other C ₅ H ₉ $\frac{1}{2}$ R Other h.c. or cpds, with h.c.	2 3 2 5	9 10 6 1	1 2 2	1 2	11 14 11 10
		moieties Q	15	18	17	12	62
69.0875	CAHaB	$C_5 H_9 \neq Y$ (Y= X, -SR, -CR) (C_1 H_1)_B \neq R	5	1		2	7 1
	10	P. I. D. and unclassified Total	<u>3</u> 78	<u>5</u> 75	$\frac{6}{36}$	$\frac{7}{38}$	<u>21</u> 227
70.0292 70.0656	C ₃ H ₄ ON C ₄ H ₈ N	CH₃C (CN) (OH)- R ┿ CH₂NHC₃H₅ ┿ HOH;	1				1
70.0782	C ₅ H ₁₀	pyrrolidines (CH ₃)₂ -cyclopentyl h.c. Terminally branched-C ₅ H., ,	5	3 4	1		4 9
		e.g., $C_2 H_5 C(CH_3)_2 - (m/a, 71 a) = 0$	2	3	5		10

<u>m/e</u>	<u>Formula</u>	Structural	Significance		Rela	tive bility		
				<u>1</u>	2	<u>3</u>	<u>4</u>	Total
70.0782	C.H. (Co	ont'd.)						
	- 510 (- 1	Other h.c.			1	3		4
		$H + C_5 H_{10} + Y$	(Y = -OR, -SR, -ONO)	2	1			3
			(Y = -OCOR, -OCOR*)	વ	7	2		12
			(Y= X)	3	1	1		5
		Others		3	5	5		13
	$C_{5}H_{10}, C_{5}$	$_{3}H_{4}ON, C_{4}H_{8}N$	unclassified		7	3		10
70.0871	$B_{5}B^{10}H_{5}$,	etc. $B_6 H_{10}$				1		1
	0 01	P.I.D. and oth	ner unclassified	-	$\frac{6}{22}$	$\frac{3}{24}$		9
		Total		19	38	24		81
71.0497	C4 H 70	<i>n</i> -C ₃ H ₇ CO + R	1		2		1	3
		$n-C_{3}H_{7}CO + O$	R	4	5 2	1		10 2
		Tetrahydrofur	yl R	5	2		1	6
		Methylcyclohe Mixed ROR, R	xanols OH	4	1	1	4	4 8
71.0860	$C_5 H_{11}$	$C_2 H_5 C (CH_3)_2$	$-C_nH_2n_{+1}$	1	4	4	2	11
		$(C_3H_7CH(CH_3))$ $(C_2H_5)_2CH \neq$	r R,		2	7	1	10
		Other satd. h.	C.		3 12	24 13	7	34 35
		$C_5 H_{11} \neq Y$ (Y	= -CHRR',		12	15	10	55
		- (V-	CRR'R")	1	3	4	4	8 7
		(Y=	= -OR; -ONO)	2		1	-	3
		(Y	ပူ = -OCR*)	3	2			5
		(Ţ	= X)	4	4	3		11
	Also:	$\mathbf{B}_5 \mathbf{B}^{10} \mathbf{H}_6, \mathbf{C}_2 \mathbf{H}_5$	В (ОСН ₃)-,					
		CH ₃ CO-CO-, C	C ₃ H ₃ S,	2	2	1	2	7
		$C_4 II_9 I_4, C_3 II_5 I_4$	0	2	2		2	•
		P.I.D. and un	classified	$\frac{1}{20}$	$\frac{3}{45}$	$\frac{1}{62}$	5	$\frac{10}{174}$
		Iotai		29	45	05	51	117
71.9908	$C_2 H_2 NS$	$SCNCH_2 + R,$	NCSCH ₂ R	3	2	1		6
72.0449	C ₃ H ₆ NO	(CH ₃) ₂ NCO ∔	R LR where P	4				4
		large, (m/e)	59 is base)	. .	4	2		6
72.0575	C ₄ H ₈ O	$\begin{array}{c} \text{OCHCH}(\text{C}_{2}\text{H}_{5}) \\ \text{C}_{0}\text{H}_{2}\text{COCH}_{2} \end{array}$	+R+H (rearr.).) 1	1			2
		others	; (1000))	2	2	5		9

m lo	Formula	Structural Significance		_Rela	tive		
mre	rorman	Structurer Signarounco	1	Proba	bility	4	Total
			<u>+</u>	4	2	1	10141
72.0813	C ₄ H ₁₀ N	CH ₃ NHCH (C ₂ H ₅) \ddagger R, C ₂ H ₅ NHCH (CH ₃) \ddagger R, C ₃ H ₇ NHCH ₂ \ddagger R, R \ddagger CH ₂ N (C ₃ H ₇) \ddagger R' \ddagger H (rearr.) C ₄ H ₉ NH \ddagger COR Cpds. having more abundant C _n H _{2n+2} N peak	3	4 1 5	1 1		8 2 5
72.1028	B ₅ B ¹⁰ H ₇ ,	etc. B ₆ H ₁₀ P.I.D. and unclassified Total	<u>2</u> 15	1 5 25	<u>8</u> 18		1 <u>15</u> 58
73.0289	$C_3 H_5 O_2$	$CH_{a}COOCH_{a} + R$ (?)		1	4		5
		$HOOCC_2 H_4 + R$ (rearr. ?) (base for R>C ₆)	5	5	3		13
73.0373	C. H. Si	(CH_1) , Si $\neq R$	6		1		;
73.0461	$C_2 H_6 O_2 B$	$(CH_{3}O)_{2}B_{1}^{+}Y$ (Y= R, -OR, X)	3				3
73.0527	C ₃ H ₇ ON	$(CH_3)_2$ NCO \ddagger OPhR \ddagger H (rearr.)? $(m/e \ 72 \ is \ base)$		1	2		3
73.0653	C4 H9 O	HOCH (C ₃ H ₇) $\stackrel{+}{+}$ R, HOC (CH ₃) (C ₂ H ₅) $\stackrel{+}{+}$ R C ₃ H ₇ OCH ₂ $\stackrel{+}{+}$ R CH ₂ OC (CH ₃) $\stackrel{+}{+}$ R	1	2 2	3 4		6 6
		CH ₃ OCH (C ₂ H ₅) $\frac{1}{7}$ R, C ₂ H ₅ OCH (CH ₃) $\frac{1}{7}$ R CH ₃ OCH ₂ CH (CH ₃) $\frac{1}{7}$ R CH ₃ OCH ₂ CH (CH ₃) $\frac{1}{7}$ OR,	2	3	1		6
		$HOCH_2C (CH_3)_2 + OR$	1	1	1		2
7 3. 0891	C4 H11 N	$(C_2 H_5)_2 N \stackrel{1}{+} CH_2 PhR \stackrel{1}{+} H$ (rearr.)? (<i>m/e</i> 58, 30 larger) P.I.D. and unclassified Total	10 28	$\frac{5}{23}$	3 <u>5</u> 29		3 <u>20</u> 87
74 0190	СНЯ	use u 1 su avalia milidas			1	9	٩
74.0190	$C_3 H_6 S$ $C_4 H_6 O_6$	$HOOCCH' (CH_{a}) \neq R \neq H,$			1	2	5
	3 6 2	CH ₃ OOCCH ₂ $\stackrel{*}{\rightarrow}$ R $\stackrel{+}{\rightarrow}$ H (rearrs.) CH COOCH ₂ $\stackrel{*}{\rightarrow}$ RY $\stackrel{+}{\rightarrow}$ H) 11	1	1		13
		(Y= -OH, -OR') (rearr.) Others		1	1	2 2	3 3
74.0605	C ₃ H ₈ NO	HOC ₂ H ₄ NHCH ₂ \ddagger R, HOCH ₂ C (NH ₂) (CH ₃) \ddagger R, R \ddagger CH ₂ N (C ₂ H ₄ OH) \ddagger R' \ddagger H (rearr					
		CH_3NHCH_2CH (OH) $+$ R, etc.	4	2	1	1	8 14
		Total	18	9	<u></u> 8	9	44
		1.0.000			-		

<u>m/e</u>	<u>Formula</u>	Structural Significance	1	Rel Prob	ative abilit	Уд	Total
			÷	-	2	-	1000
75.0001	$C_3 H_4 Cl$	$C_3 H_4 Cl \neq R$ Cl(C=C-C) + Y (Y= -OR, -NR ₂)	8				8
		-OCOR)	6	2	1		9
		$C_3 H_4 Cl \neq HXY$ (Y=X, -COR,					
		-OCOR), $C_3 H_4 Cl \neq X_3$	5	1	4	1	11
75.0046 75.0166	C ₃ HF ₂ C ₂ H ₇ OSi	$C_n H_p X_q F_2$ (q > p) HOSi (CH ₃) ₂ + R, CH ₃ + Si (CH ₃) ₂ O + R + H		2	1		3
	a	(rearr.)?	T		1	1	3
75.0235				1	5	10	21
75.0268	$C_3 H_7 S$	$C_2 H_5 SCH_2 + R; HSC(CH_3)_2 + R$ $CH_4 SCH (CH_4) + R,$	4			T	Э
		HSCH $(C_2 H_5) \stackrel{i}{+} R$	2	1	2		5
75.0445	$C_3 H_7 O_2$	$(CH_3O)_2CH \neq R$ HOC ₂ H ₂ OCH ₂ \neq B	3	1	1	1	6
		$HOC_2 H_4CH (OH) + R, etc.$		4	2	2	8
75,0558	C ₂ H ₂ ON ₂	$C_2 H_5 COO + R + H_2$ (rearr.) $R + CH (NHCH_0OH) -$			1	2	3
1010000	02 1170112	$NH \neq NHCH_2O \neq H$ (rearr.)			1	_	1
		P.I.D. and unclassified	1	1	4	2	8
		Total	30	13	23	25	91
75.9441	CS ₂	Thiols, sulfides, etc., prob. from cracking on M.S. filament.					
75.9999	C_2NF_2	NCCF ₂ + X	1	1		_	2
76.0034	СН ₂ О ₃ N С. Н. С1	$O_2 NOCH_2 + R$ (nitrates) C_ H_Cl + HX	1		1	53	5 5
	-36	$Y + C_3 H_5 Cl + Y'$ (Y= H, Cl, etc.; Y'= -COR, -OR, -OCOR,			-		-
76.0313	$C_6 H_4$	-R) Ph ‡ HY* Y ‡ Ph ‡ Y' (Y, Y'= variety of	1	2 3	2	3	8 3
		substs. or Y-Y'= fused arom.		1	4	11	16
		P.I.D. and unclassified	3	6	4	3	16
		Total	6	13	11	25	55

76.9794	$C_2 H_2 OCl$	$ClCH_2CO + Y (Y = X, -OR, R);$				
		CCl ₃ CH ₂ OH	4		3	7
77.0158	C ₃ H ₆ Cl	$C_3 H_6 Cl \neq Y$ (Y=X, -COR, R,				
		-OR)	7	2	4	13
77.0203	C, H, F,	C.H.F. ∔X. C.H.F. ≢HYX				
		(Y=X, -RX)	2	1	4	7

<u>m/e</u>	<u>Formula</u>	Structural Significance	1	$\frac{\text{Pro}}{2}$	elative babili 3	e ty 4	Total
77 0005	O U N		-	-	-	-	
77.0265	$C_5 H_3 N$ $C_6 H_5$	Pyridyl \neq HY* Ph \ddagger Y (Y= variety of subst.) o-Y-Ph-Y' (rearr.) (m/e 77 >> 76) m-, p-Y-Ph-Y' (rearr.) (m/e 77 > 76) Others (unsatd. h.c., indoles, etc.) P.I.D. and unclassified	13	2 33	66		112 112
			2	8	8		18
				3	13		16
				2 _4	6 7		8 1
		Total	28	55	111		194
		<i>.</i>					
78.0344	C₅ H₄ N	$\begin{array}{l} \text{Pyridyl} \downarrow Y (Y = -\text{COR}, -X, \\ -\text{CH} = \text{CHR}, -\text{NHR}, -\text{R}, \text{ etc.}) \end{array}$	3	2	4	3	12
78.0469	C ₆ H ₆	$Ph \neq Y. \neq H$ (Y = metal-R, -NHNH ₂ ; unsatd. as					
		$C=N^{-}$, $-C=C^{-}$; $-OR$, $-SR$) (rearr.) YCH ₂ \neq Ph \neq Y' (Y= -OH, -H or fused to Y'; Y'= -OH, -O-, -CO-, $-NO_2$, etc.) (rearr.) Cycloalkadienes, substd. cycloalkanes P.I.D. and unclassified	4	3	4	2	13
			3	1	1	7	12
			7	1 5	2 3	6	3 21
		Total	17	12	14	18	61
78.9671	CH ₄ SiCl	$(ClCH_2)_2 \mathfrak{Sl}(CH_3)_2 - CH \mathfrak{SCH}$	1	1	1		1
78.9751 78.9949	$C_{2}HClF$ CL.O.P	$C_2 HClF \neq Cl$ $OPH(OCH_2) \neq OCH_2$.		-	1		1
		$CH_3O \neq PO(CH_3)O \neq CH_3$ (rearr.)		2			2
78.9950	C_2H_4OC1	$ClCH_2 OCH_2 + R,$					
70 0400	a	ClC $\frac{4}{7}$ OC ₂ H ₃ Cl $\frac{1}{7}$ R $\frac{1}{7}$ H (rearr.)	1	1			2
79.0422	$C_5 H_5 N$	$\begin{array}{c} Pyridyl-Y + H & (rearr.) (Y = \\ -COR, -CH=CH-) \\ Puridyl- (CH) \end{array}$	1	2	1		4
79.0547	$C_6 H_7$	Cycloalkadienes, alkenynes Cyclohexenyl $\frac{1}{2}$ Y, cyclo- pentenyl $\frac{1}{2}$ Y (Y= -COR,	5	-	Ŭ		5
		-CH ₂ OH, -CH=CHR, -CN, -R); polycycloalkenes, -anes Ph \neq CH (OH) Y (rearr.) (m/a)	4	5	3		12
		79 > m/e 77, m/e 107 usually $m/e 79$; PhCH (NH ₂) Y (rearr.)	1	7	1		9

34
	Formula	Structural	F					
<u>m/e</u>	Formula	Significance	1	2	<u>3</u>	4	5	Total
79.0547	C ₆ H ₇ (Cont Y P	('d.) -Ph-Y' (Y= H, Y'= -OCOR, -OR; Y= CH ₃ , Y'= -X, -CH ₂ X; Y= -CH ₂ OH, Y'= X) (rearr.) .I.D. and unclassified	_3	3 _5	7 <u>10</u>			10 <u>18</u>
		Total	16	27	29			72

CH ₄ S ₂	CH₃SS∔R∔H (rearr.)	1			1		2
CH ₅ O, P	CH, OOPH + OCH, (rearr.)	1					1
C _⊾ H̃₄Õ?	Methylhydroxybenzenes			2		1	3
C ₅ H ₈ N	Alkylpyrroles, subst.						
50	pyridines and anilines		8	4	4	1	17
C _e H _e	Subst. cyclohexenes		1	2	2		5
0 0	Cyclohexyl-YY', -YY'Y''						
	(Y = X, OH, t-bu, etc.)	1	1	1		2	5
	Satd. multiple fused ring						
	cpds.	1	1			3	5
	P.I.D. and unclassified	3	7	4	2	1	17
	Total	7	18	13	9	8	55
	CH ₄ S ₂ CH ₅ O ₂ P C ₅ H ₄ O? C ₅ H ₆ N C ₆ H ₈	CH_4S_2 $CH_3SS \ddagger R \ddagger H (rearr.)$ CH_5O_2P $CH_3OOPH \ddagger OCH_3 (rearr.)$ C_5H_4O ?Methylhydroxybenzenes C_5H_6N Alkylpyrroles, subst. pyridines and anilines C_6H_8 Subst. cyclohexenes Cyclohexyl-YY', -YY'Y'' (Y= X, OH, t-bu, etc.) Satd. multiple fused ring cpds. P.I.D. and unclassified Total	$\begin{array}{cccc} \mathrm{CH}_4\mathrm{S}_2 & \mathrm{CH}_3\mathrm{SS} \stackrel{+}{\rightarrow} \mathrm{R} \stackrel{+}{\rightarrow} \mathrm{H} \left(\mathrm{rearr.}\right) & 1 \\ \mathrm{CH}_5\mathrm{O}_2\mathrm{P} & \mathrm{CH}_3\mathrm{OOPH} \stackrel{+}{\rightarrow} \mathrm{OCH}_3 \left(\mathrm{rearr.}\right) & 1 \\ \mathrm{C}_5\mathrm{H}_4\mathrm{O}\mathrm{?} & \mathrm{Methylhydroxybenzenes} \\ \mathrm{C}_5\mathrm{H}_6\mathrm{N} & \mathrm{Alkylpyrroles, subst.} \\ & & \mathrm{pyridines and anilines} \\ \mathrm{C}_6\mathrm{H}_8 & \mathrm{Subst. cyclohexenes} \\ & & \mathrm{Cyclohexyl-YY', -YY'Y''} \\ & & & \mathrm{(Y=X, OH, t-bu, etc.)} & 1 \\ & & \mathrm{Satd. multiple fused ring} \\ & & & \mathrm{cpds.} & 1 \\ & & \mathrm{P.I. D. and unclassified} & \underline{3} \\ & & & \mathrm{Total} & 7 \end{array}$	$\begin{array}{cccc} \mathrm{CH}_4\mathrm{S}_2 & \mathrm{CH}_3\mathrm{SS} + \mathrm{R} + \mathrm{H} \mbox{(rearr.)} & 1 \\ \mathrm{CH}_5\mathrm{O}_2\mathrm{P} & \mathrm{CH}_3\mathrm{OOPH} + \mathrm{OCH}_3 \mbox{(rearr.)} & 1 \\ \mathrm{C}_5\mathrm{H}_4\mathrm{O}? & \mathrm{Methylhydroxybenzenes} \\ \mathrm{C}_5\mathrm{H}_6\mathrm{N} & \mathrm{Alkylpyrroles, subst.} \\ & & \mbox{pyridines and anilines} & 8 \\ \mathrm{C}_6\mathrm{H}_8 & \mathrm{Subst. cyclohexenes} & 1 \\ & \mathrm{Cyclohexyl-YY', -YY'Y''} \\ & & \mbox{(Y=X, OH, t-bu, etc.)} & 1 & 1 \\ & \mathrm{Satd. multiple fused ring} \\ & & \mbox{cpds.} & 1 & 1 \\ \mathrm{P.I.D. and unclassified} & \frac{3}{7} & \frac{7}{18} \end{array}$	$\begin{array}{ccccc} \mathrm{CH}_4\mathrm{S}_2 & \mathrm{CH}_3\mathrm{SS} \stackrel{1}{+} \mathrm{R} \stackrel{1}{+} \mathrm{H} (\mathrm{rearr.}) & 1 \\ \mathrm{CH}_5\mathrm{O}_2\mathrm{P} & \mathrm{CH}_3\mathrm{OOPH} \stackrel{1}{+} \mathrm{OCH}_3 (\mathrm{rearr.}) & 1 \\ \mathrm{C}_5\mathrm{H}_4\mathrm{O}? & \mathrm{Methylhydroxybenzenes} & 2 \\ \mathrm{C}_5\mathrm{H}_6\mathrm{N} & \mathrm{Alkylpyrroles, subst.} \\ & & \mathrm{pyridines and anilines} & 8 & 4 \\ \mathrm{C}_6\mathrm{H}_8 & \mathrm{Subst. cyclohexenes} & 1 & 2 \\ & & \mathrm{Cyclohexyl-YY', -YY'Y''} \\ & & & (\mathrm{Y=X, OH, } t\text{-bu, etc.}) & 1 & 1 & 1 \\ & & \mathrm{Satd. multiple fused ring} \\ & & & \mathrm{cpds.} & 1 & 1 \\ \mathrm{P.I. D. and unclassified} & \frac{3}{7} & \frac{7}{18} & \frac{4}{13} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

80.9907 0	C, H, ClF	C, H, Clf ∔ Y	3				3
81.0340 C	C, H, O	Furan-CH, 🛔 R	5		2		7
	5 5	$HOPhY (\tilde{Y}= -OR, -NH_2)$			5		5
81.0578 C	$C_5 H_7 N$	Pyrrole-CH ₂ \ddagger R \ddagger H (rearr.); R-pyridine-					
		NH ₂	1	1	1	1	4
81.0704 0	C ₆ H ₉	Alkyl hexynes; hexadienes Cyclohexenyl \downarrow Y,	2	5	4	1	12
		polyisoprenes	7	2	3	1	13
		Cyclohexyl ≢ HYZ (mainly					
		Y = -OH, Z = R, OF YZ = fused ring) Cyclobexyl-Y = -YY'Y''	10	16	9	6	41
		etc.	4	4	6	1	15
I	Also: HO BC	CH_2CF_2 -, CH_3OCF_2 -, lo, $CHF_2CO + OB + H_2$					
	(re	arr.)	3	1		1	5
		P.I.D. and unclassified	_1	_2	_5	6	_14
		Total	36	31	35	17	119

mla	Formula	Structural	Rela	tive	Pro	babil	ity	
mre	Formula	Significance	1	2	<u>3</u>	4	5	<u>Fotal</u>
81.9377 82.0656	CCl ₂ C ₅ H ₈ N	$CC1_{2} \neq XY (Y = -CH[OR]_{2},-CHO, -CN, X, etc.)NCCH_{2}CH_{2}CH_{2}CH_{2} + R$	3 1	2	2 1	2		9 2
82.0782	C ₆ H ₁₀	Cyclohexyl \neq HY (Y= R, substd. R; -OR, X, etc.)	8	19	7	8		42
		Z = R etc. Z = R etc.	ι, Δ	2	3	4		9 23
		Total	$\frac{1}{16}$	0 29	18	22		85
					_			
82.9455	CHCl2	$CHCl_{2} \neq Y$ $Cl \neq CCl_{2} \neq CO-R \neq H \text{ (rearr.)}$	12	3	4	4		23
82.9603	$SO_2 F$	(impurity?) FSO ₂ $\frac{1}{2}$ (Y=X, -OR)	2 4	2	3 1	4		11 6
82.9955 83.0108	C₄H₃S C,H,F、	Thiophene $\frac{1}{2}$ Y (Y=X, -COR) C, H, F, $\frac{1}{2}$ Y	1	1 4	1 2	1		3 7
83.0297	C₅ H₄ F	$\mathbf{F} - \mathbf{P} \mathbf{h} - \mathbf{Y}$ (Y = -OH, -OR, R, -NH,)		3	4	1		8
83.0497	C₅ H ₇ O	Dihydropyrans, alkenones, alkynols, etc.	3	1	2			6
83.0860	C ₆ H ₁₁	Cyclohexyl \neq Y (Y= R, X, etc.) Other cycloalkyl cpds. : olefins	20 9	18 7	7 3	14 5		59 24
		Alkyl-Y, $-YY'$ (Y= -OH, X) P L D and unclassified	53	2 2	4	43		15 12
		Total	59	<u>-</u> 43	35	36		<u></u> 174
04:0004								1
84.0034 84.0375	$C_4 H_4 S$ $C_5 H_5 F$	Thiophene $+C_2H_2 + H$ (rearr.) F-Ph-Y (Y= -NH ₂ , -OR)			•		I	1
84.0813	$C_5 H_{10} N$	(<i>m/e</i> 83 large) Piperidines, methyl pyrrolidines, imidazolines		1	Z			3
84.0938	$\rm C_6H_{12}$	(rearr.) Alkanes (m/e 85 large) C ₆ H ₁₂ \neq HY (Y= X, -OCOR, -SH etc.). C H \neq (OH)	6	1	1 2	1 2	2	8 7
		$(-CH_2 OH)$	32	1	1	4	1	9 7
		P.I.D. and unclassified	2	6	9	$\frac{12}{24}$	$\frac{11}{10}$	<u>40</u>
		Total	13	12	10	24	10	81
84. 9621 84. 9655	SiF ₃ POF		1	1				1
84.9657 85.0289	$\begin{array}{c} CC1F_2\\ C_4H_5O_2 \end{array}$	$CClF_2 + (rearr.)$	19 1	5 2	13			37 3

<u>m/e</u>	Formula	Structural Significance		Re Pro	elativ babil	e .ity		
			<u>1</u>	2	3	4	<u>5</u>	Total
85.0653	C₅ H ₉ O	$C_4 H_9 CO + R, C_4 H_9 CO + OR$	1	3	4			4
85.0765 85.0891	C ₄ H ₉ N ₂ C ₅ H ₁₁ N	Piperazine + R	1	1 1	1 1			2 2
85.1017	$C_6 H_{13}$	$C_3 H_7 C(CH_3)_2 + R,$ $CH_3 C(C_2H_5)_2 + R$		4				4
		$C_4 H_9 CH(CH_3) + R,$ $C_3 H_7 CH(C_2 H_5) + R$ Other satd, h. C., etc.		6 1	3 3			9 4
		$C_6 H_{13} + Y$ (Y= -COR, -COOR) (Y= -OCOR*)		2 2 2	1			2 3
		(Y = -OR) $(Y = X)$	2	2 4	c			4 4 22
		Total	25	$\frac{10}{51}$	$\frac{6}{32}$			108
86.0731	C ₅ H ₁₀ O	$CH_3 COC (CH_3)_2 + R + H,$ $C_3 H_7 COCH_2 + R + H$ (rearrs.)		1			1	2
86.0969	$C_5 H_{12} N$	$RO + C_5 H_{10} O + H$, etc. $(C_2 H_5)_2 NCH_2 + R$,	3	4	2	3	2	14
		$C_3 H_7 NHCH (CH_3) + R,$ $C_4 H_9 NHCH_2 + R,$ etc. P + CH N (C + 1) + Y	14	2	1		1	18
		$(Y = RCO-, PhCH_2-)$ (rearr.) Others	3 1				2	3 3
		P.I.D. and unclassified Total	<u>5</u> 26	$\frac{7}{14}$	$\frac{3}{6}$	<u>-5</u> 8	$\frac{5}{11}$	$\frac{25}{65}$
87.0001	C4 H4Cl	C₄ H₄C1 ∔ X, C₄ H₄C1 ≢ HX₂ ,						
87 0268	С. н8	$C_4 H_4 Cl \neq H_2 X_3$ This cyclosikanes	1 3		1	2		4 3
87.0446	$C_4 H_7 O_2$	$C_3 H_5 COO + R + H_2$ (rearr.) $CH_3 OOCC_2 H_4 + Y,$	Ū	3	1	3		7
		(rearr.)	3	8	3		1	15
		$CH_3COOCH (CH_3) + R$ Other esters and acids	3	3	1	1	2	5 6
87 0590	C L Ci	Methyl dioxolanes, etc. $C H (CH) = Si + P$	4	1	2 1	1	1	82
87.0616	$C_3 H_8 O_2 B$	$C_{3}H_{7}OB(\frac{1}{7}OR) - O \frac{1}{7}R + H$ (rearr.)	2		•		*	2
87.080 9	С ₅ Н ₁₁ О	ROCR'R'' $+ Y$ ($\Sigma R = C_4 H_{11}$,	-	~		~	•	-
		Y = R, -OR HOCRR' $\frac{1}{2}$ Y ($\Sigma R = C_4 H_{10}$)		6 2	4 3	2	2	14

 $\frac{\text{HOCRR'} + Y(\Sigma R = C_4 H_{10})}{\text{In Mass Spectral Correlations; McLafferty, F.;}} 2 3 1$ Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

mlo	Formula	Structural	R	elati	ve P	roba	bility		
mje	Formula	Significance	1	2	<u>3</u>	4	5	<u>6</u>	Total
87. 1047	C ₅ H ₁₃ N	(C ₂ H ₅) ₂ NCH ₂ [↓] / ₁ R [↓] / ₁ H (rearr., 86 is larger) P.I.D. and unclassified Total	<u>3</u> 19	1 <u>16</u> 40	<u>9</u> 25	<u>9</u> 19	2 5 16		3 <u>42</u> 119
8 8. 03 98	$C_3 H_6 NO_2$	CH ₃ OOCCH (NH ₂)-, CH ₃ OOCCH(NH \downarrow COR) \downarrow B' \downarrow H (rearr.)	1	2	1	1	1		6
88.0524	$C_4 H_8 O_2$	$C_2H_5OCOCH_2 + Y + H$ (rearr.) (Y= R, -OR,	-	-	-	-	-		
		-COOR) HOOCCH $(C_2 H_5) \neq R \neq H$	1		1	1	2		5
88 . 0762	$C_4 H_{10} NO$	(rearr.) Others $Z \neq CYNY'Y'',$ $Z \neq CYN(Y') \neq Z' \neq H$		2		1	1		2 2
		(rearr.) ($\Sigma Y = C_3 H_9 OH$, Z= -R, -CR ₂ OH, etc.) P. L.D., and unclassified	4	2 2	2 4	4 1	1 2		13 11
		Total	8	8	8	8	<u>-</u> 7		<u></u> 39
89.0158		C_{4} H, $C1 + X$	2	3					5
09.0322	$C_3 H_9 OSI$	$ROCH_2 SiR_3$, (rearrs.)		1	1	1	3		6
89.0391	$C_7 H_5$	(Z=S, -NH-, -CH ₂ -), PhCHYY', YPhCH ₂ Y', PhCH ₂ Y, YPhCH ₃ , Y ₃ -(Ph-C) (Y=X, -CN, -NO ₂ , etc.)		1	3	7	7	22	40
89.0425 89.0602	$\begin{array}{c} C_4 \ H_9 \ S \\ C_4 \ H_9 \ O_2 \end{array}$	$(C_3 H_7SCH_2 + R)$ $(CH_3O)_2C (CH_3) + Y$ (Y= -OR, R), $HOC_3 H_6OCH_2 + R,$ $HOC_2 H_4OC_2 H_4 + OR.$	2	ī	-		1		4
		etc.		3	1	5	4	2	15
		$C_3 H_7 COO + R \neq H_2$ (reard P.I.D. ions	r.)	3	2 2 1	2 5 2	1 7 1	1	5 18 7
		Uner unclassified	-2	19	10	<u>4</u> 22	<u>1</u> 24	<u>1</u> 26	100
		Total	6	12	10	22	24	20	100

<u>m/e</u>	<u>Formula</u>	Structural Significance	$\frac{Re}{1}$	$\frac{2}{2}$	ive <u>3</u>	<u>Pr</u>	oba 5	$\frac{1}{6}$	<u>ity</u> 7	<u>8</u>	Total
90.0344 90.0469	C ₆ H ₄ N C ₇ H ₆	YPhNCO, YPhNHCONH ₂ , YPhNHR (Y= $-NO_2$, X) PhCH ₂ Y*, CH ₃ PhY*, benzo cpds., etc.		3 4	1 6	1 3	1 4	1 4	5	1 8	8 34
	Also: C ₄ C ₄	$H_7C1 \neq HX, C_4 H_{10} S, H_{10} O_2$			1	1	1	1			4
		P.I.D. ions Other unclassified Total	1	3 10	$\frac{1}{10}$	3 1 9	1 1 8	2	1	1 10	$\frac{13}{3}$
91. 0314 91. 0422 91. 0547	C₄ H ₈ C1 C ₆ H ₅ N C ₇ H ₇	ClC ₄ H ₈ \ddagger R; ClC ₄ H ₈ \ddagger OR PhN \ddagger HY; Y \ddagger PhNH \ddagger Y' PhCH ₂ \ddagger Y (Y= -OR, R, X, -RX, -COR etc.) CH ₃ Ph \ddagger Y*, CH ₃ Ph \ddagger CH ₃ PhCH \ddagger YY' \ddagger H,	7 3 48 13	3 18 11	1 3 5 11						8 9 71 35
		PhC \ddagger Y ₃ \ddagger H ₂ (rearrs.) (Y= R; X, -OR) Combinations of above (rearr.), etc.	18 2	9 7	7 27						34 36
	Also: Cl (N	$(CH_2 CH_2 CO \neq OR,$ $(O_2)_2 \neq PhO \neq R$	1	1	3						5
		P.I.D. ions Other unclassified Total	<u>2</u> 94	<u>5</u> 54	6 <u>1</u> 64						$\frac{6}{8}$
92.0262	C ₆ H₄ O	HOPhY $(Y = -NO_2, -COOR, large R, X, -OH, etc.)$		3	2	4					9
92.0500	C ₆ H ₆ N	Plint + 1 (1 = -COR, $-NH_2$), H ₂ NPh + Y (Y = X, -COR, -COR)		2	4	5					11
00.0000	a u	-COR, H), pyridyl-CH ₂ $+$ R		1	2	5					8
92.0020	С ₇ Н ₈	PhCH ₂ + R + H, PhCH ₂ + RY + H (rearrs.) PhCH ₂ + OR + H,	12	7	5	4					28
		PnCH ₂ $+$ NRY $+$ H, PhCH ₂ $+$ SR $+$ H (rearrs.) PhCH=CHCH ₂ OR, (rearr.),	1	5	4	9					19
		∝-ninene etc	1	- 2		1					4

∝-pinene, etc.

P.I.D. ions

2 1

1 4 1

14

4

10

<u>m/e</u>	Formula	Structural Significance		Rel Prob	e t v		
			1	2	<u>3</u>	4	Total
92.0626	С.Н. (Со	ont'd.)					
	- / 8 (- (Other unclassified	_1	_4		_7	_12
		Total	19	25	18	39	101
92.9340	CH_2Br	$BrCH_2 + Y$ (Y=X, R, -RX,		9		7	10
92.9952	C ₃ F ₃	Halocarbons and dvts.	5	J	8	5	18
93.0107	C ₃ H ₆ OC1	C1 (C ₂ H ₅) C (OH) $\stackrel{+}{+}$ R,	9	1			4
93.0340	C ₆ H ₅ O	$HOPh \neq Y$ (Y= -NR ₂ , -COR,	3	T			7
00 05 50	<u> </u>	$-NO_2$, X)		1	5	3	9
93.0578	C ₆ H ₇ N	$Y \neq pyridyl-CH_2 \neq R \neq H;$ Y $\neq pyridyl-CH_2 \neq R$					
		(rearrs.)	2		1	2	5
		PhN(+R) + Y, PhNH + Y (rearrs.) (Y= -CORN=CF	2.				
		-NHR, R), N-Ph-dihydro-	-, _	•	•	_	10
93,0704	C-H.	Terpenes (C., H.,):	5	3	3	5	10
	- 79	cyclohexenyl- Y_2 , $-Y_3$;	10				10
		sesquiterpenes	12	4	1	1	18
	Also: C	$H_3ClF, C_2H_2O_2Cl,$					
	R. Cl	PO (OR) OCH ₃ (rearr.), $((CH_{a})_{a}$ Si \neq R	2	2	2	2	8
			0				10
		P.I.D. 10ns Other unclassified	b	4	1	Z	13
		Total	35	19	22	27	103
93.9419	CH ₃ Br	$BrCH_2 \neq Y \neq H, R \neq BrCH \neq T$	Y				
		$[Y = -\dot{C}OOH, -COH,$	5				5
94.0418	C ₆ H ₆ O	PhO + Y + H (Y=R, -COR,	5				Ŭ
		-RY') (rearr.)	15	6	5	1	27
		benzopyrans (rearrs.)				5	5
		USS D U (noomn)					
	HISO. C ₂	$\frac{1}{100} = \frac{1}{100} + \frac{1}$					
	C	$H_3 PO (OCH_3) \neq OR \neq H (rearr.$.) 6	3	3	1	13
	C,	$11_{10}, 0_{3} 111_{3}, 01_{2} - 0_{1}$	v		v	•	10
		P.I.D. ions Other unclassified	5	1 2	2		6 4
		Total	31	$\frac{-}{12}$	 8	9	- <u>-</u> 60
					-	-	

<u>m/e</u>	<u>Formula</u>	Structural Significance	<u>1</u>	F <u>Pr</u> 2	tela tobal <u>3</u>	tive bilit <u>4</u>	<u>у</u> <u>5</u>	<u>6 '</u>	Total
95.0133	$C_5 H_3O_2$	Furyl-CO \neq Y (Y= -OR, R);		4	4				10
95.0497	C ₆ H ₇ O	PhOH ₂ ? [from PhOC(CH ₃) ₃ , (CH ₃) ₂ CPhOH, Ph/OCH ₃) ₃ ,	7	4	1				12
		ROPhYY' (Y=X, -CHO)] Methylfurans, cyclohexenones,		2	2	3	2		9
05 0000	0.11	etc.		3		1	2		6
92.0800	C ₇ H ₁₁	alkanes, etc.	9	7	5	7	5		33
	Also: C ₃ -H	H_2F_3 , C_3H_5ClF , $FPh \neq Y^*$, ISeCH ₂ -, CH ₃ OSO ₂ \neq OR,	_			-			10
	C,	$_{2}$ HCl ₂ -, CH ₃ -pyrazole-CH ₂ -	5	4	4	3	3		19
		P.I.D. ions	1	2	3	9	7		23
		Other unclassified	1		10	$\frac{1}{2}$	$\frac{2}{2}$		$\frac{4}{100}$
		1001	20	22	10	24	21		100
96.0938	C ₇ H ₁₂	Dicycloalkanes, cycloalkyl + HY (Y= -OH, R) etc.	3	6	5	5	2	1	22
	Also: C C	$_{2}H_{2}Cl_{2}$, furyl-CHO \neq YY', $_{3}H_{10}CN$, FPh \ddagger R \ddagger H (rearr.), $_{3}H_{2}F_{3}$	3	4		5	2	4	18
		P.I.D. ions	4	10	4	3	7	1	29
		Other unclassified	1		1		1		
		Total	11	20	10	13	12	8	74
96.9612	$C_2H_3Cl_2$	$C_2 H_3 Cl_2 \neq Y (Y = X, -RX,$		0	4	c			10
97.0112	C ₅ H ₂ S	$-NO_2$, $-R$, $-COOR$) Thiophene-CH \neq R	8	4	3	2			13
97.1017	$\tilde{C_7}H_{13}$	$\begin{array}{c} CH_{3}C_{6}H_{10} + Y, \\ C_{7}H_{13} + HY_{2} \end{array}$	12	11	4	7			34
	Also: C	₅H ₉ O, CF ₃ CO-	1	1					2
		P.I.D. ions Other unclassified			3	2 5			2 8
		Total	27	14	14	22			77

mle	Formula	Structural Significance	Relative							
<u></u>			1	$\frac{Pr}{2}$	oba		Ш,	6 7	Poto)	
			1	4	2	-	5	<u> </u>	Iotai	
98,0969	$C_6 H_{12} N$	CH₃-piperidyl∔, etc.	5		2		1		8	
	Also: Co fu C	$_{5}$ H ₁₀ O (cyclohexanols, etc.), rfuryl alkanoates, C ₂ HClF ₂ , $_{7}$ H ₁₄ , thiophene-CH ₂ \neq R \neq H								
	(r	earr.), piperazine $\neq R_2$	1	6	2	3	3		15	
		P.I.D. ions Other unclassified	2 2	4	10 1	3 3	12 4		31 10	
		Total	10	10	15	9	20		64	
98.9813	C ₂ H ₂ ClF	2	1	2	1	1		1	6	
98.9846	H_4O_4P	$H_2 \neq R \neq OPO (O \neq R \neq H)_2$ (rearr.)	1	1					2	
99.0082 99.0446	C ₄ H ₃ O ₃ C ₅ H ₇ O ₂	Maleates, fumarates $CH_{Q}COC_{2}H_{4}CO \neq R$,	1	1	1				3	
99.0809	С ₆ Н ₁₁ О	$CH_{3}COOC_{3}H_{4} \neq R$ 1, 1-cyclohexyl = (OCH ₂) ₂ ,		3		1			4	
		CH_3 -tetrahydropyran $\frac{1}{7}$ OR, C_5 H ₁₁ CO $\frac{1}{7}$ R, C_5 H ₁₁ CO $\frac{1}{7}$ OR	: 3			1		1	5	
99.1173	$C_{7}H_{15}$	$RR^{i}R^{i}C \neq C_{n}H_{2n+1} (\vec{R}, R', R')$ not = H, $\Sigma R = C_{n}H_{1}$	•				1	2	3	
		Other satd. h.c. $C_7H_{15} \neq Y$ (Y=X, -COOR)		3		1		1	1 4	
	Also: In C C (n	nidazolone-CH ₂ -, C ₆ H ₁₃ N, ₅ H ₄ Cl (ClPhXNH ₂ , ClPhXOH), l ₂ SiH + R, C ₅ H ₁₁ N ₂ nethylpiperazines), S ₂ Cl,	1		7	9	9	2	91	
	D.	D I D and other upple spified	-	c		с С	-	4	20	
		Total	_1 8	$\frac{6}{16}$	$\frac{0}{15}$	$\frac{0}{13}$	9	$\frac{4}{12}$	<u>29</u> 78	
			_	-	_					
99.9936	C_2F_4	Perfluoroalkenes, -cycloalkanes	1	1	2	2	2	6	8	
100.0080	C. H. Cl	Cl-Ph-Y (Y= -ORSR)				T	2	2	4	
100.0762	$C_5 H_{10} NO$	$(C_2H_5)_2$ NCO $\downarrow R$			2	1	~		3	
100,0888	C. H., O	4-R-morpholines Cyclohexyl-O + R + H (rearr.)	4				2		6	
100 1100	C II N	$RO + C_6 H_{12} O + H$, etc.	[^] 1		2	1		1	5	
100.1126	U ₆ H ₁₄ N	$\Sigma R = C_5 H_{14}$	1	5					6	
		Other amines, mainly $(n - C_4 H_9)_2 - NCH_2 CHROH$		2	1	1			4	

42

	Formula	Structural	F	telat	ive	Pro	bab	oility		
<u>m/e</u>	Formula	Significance	1	2	3	4	5	6	<u>7</u> <u>Tota</u>	<u>ıl</u>
100. 1126	C ₆ H ₁₄ N	(Cont'd.) RCO † N (C ₅ H ₁₁) CH ₂ † R (rearr.) Unclassified Total	2 <u>1</u> 10	<u>3</u> 11	_2 9	<u>3</u> 9	<u>4</u> 13	$\frac{7}{16}$	<u>2</u> 6	2 20 58
100.9361	CCl ₂ F C.H	Styrene 🛓 HY. (Y= X.	16	1	3	3	5		2	8
101 0425	Сня Сня	$-NO_2$)	1				1			2
101.0120	05 19 0	methylthiacyclopentanes,	А	1	1					6
101.0602	$C_5 H_9 O_2$	$\frac{1}{ROCR'R''} \stackrel{1}{+} Y (\Sigma R =$	- - -	1 0	-	9				6
		$C_2 H_5 COOC_2 H_4 + ,$	2	2		1				6
101.0966	C ₆ H ₁₃ O	$C_2 H_5 OCOC_2 H_4 + \gamma$, etc. ROCR'R'' +Y, HOCRR'+Y	3	1	2	1	1			6
		$(\Sigma R = C_5 H_{13})$		1	3	1	1			U
	Also:	PC1 ₂ , PSF ₂ , CH ₃ SiC ₄ H ₉ -, C ₂ HF ₄ , C ₂ H ₅ OB (C ₂ H ₅)O-, (C ₂ H ₅ O) ₂ B-, C ₅ H ₆ Cl, CF ₃ S, and C ₅ H ₁ , N ₂	5	1	4				1	10
		- 1 1		•		~	10		-	.
		Unclassified Total	$\frac{1}{32}$	$\frac{9}{17}$	$\frac{2}{13}$	$\frac{6}{13}$	$\frac{10}{17}$		2	20 2
102.0469	C ₈ H ₆	Quinolines (loss of RCN), etc.; $PhC_2H \neq YY'$, $YY' \neq PhC_2H_3 \neq HY$, etc. (Y=X, -NO ₂ , -CN, H, P)	,	9	9	А	1	7	6 5	22
102.0680	C ₅ H ₁₀ C	p_2 Ester, etc., rearrs. (see m/e 74, 88)		2	2	7	2	•	0.2	4
	Also:	CF ₃ CON (C ₂ H ₅) ↓ R ↓ H ₂ (rearr.), R ↓ PhCN, C ₂ (CN) ₃ -		1	1		1			3
		Unclassified	_1	_4	_2	_3		_1	1	11
		Total	1	7	7	7	4	8	6 4	40

<u>m/e</u>	<u>Formula</u>	Strucutral Significance	<u>1</u>	$\frac{Pro}{2}$	elativ obabi <u>3</u>	ve lity 4	<u>5</u>	Total
103.0394 103.0479	C ₄ H ₇ O ₃ C ₄ H ₁₁ OSi	$CH_{3}COOCH_{2}CH_{2}CH_{2}(OH) \stackrel{1}{+} R$ $(CH_{3})_{3}SiCH_{2}O \stackrel{1}{+} R$,		2	1	1	1	6
103.0547	$C_8 H_7$	$(CH_{3})_{2}$ Si $(OC_{2}H_{5}) + OR?$ PhC ₂ H ₂ + Y (Y= -CO ₂ R, -COR, X, R); highly unsat. h.c.;		2		1		3
		PhCHCH $(+Y) + 0$, Z						
		(Z = NH, O, =C=O), $PhC_2H_2 \neq HYY', Y \neq PhC_2H_3$ $\rightarrow HY'$ (Y = X = OR	1	6	5	1	9	22
		$\frac{1}{R}$		4	5	11	9	29
103.0581 103.0758	$C_5 H_{11} S$ $C_5 H_{12} O_2$	$C_3 H_7 SCH(CH_3) \neq R$, etc. HOC ₂ H ₂ OCH(CH ₄) $\neq R$.		1	1		2	4
10010100	0511102	$(C_2 H_5 O)_2 CH + OR$ etc.		6	4	2	1	13
		P.I.D. ions	1	17	1	3	3	25
		Other unclassified			$\frac{3}{3}$	-	1	0
		Total	2	38	20	20	26	106
104 0000								
104.0262	C ₇ H₄O	Y + PnCO + Y' (Y = -COR,						

104.0202	$C_7 II_4 O$	1 + 1 = -001						
		$-NO_2$, H; Y' = $-OR$, R, X)	3	5	5		4	17
104.0500	$C_7 H_6 N$	$Ph - N(CH \neq) \neq$						
		$pyridyl-C_2H_2-, CPhN$	1	1	3	2	1	8
104.0626	C ₈ H ₈	Tetralins, indanes,						
		Ph-cycloalkenes, -anes,						
		$PhCHYCH_2Y'$ (Y or $Y' = X$,						
		-OH, -OCOR, Ph, R, H),						
		etc.	11	8	13	4	5	41
			1		1			2
	AISO: C	$D_5 H_9 CI, C_4 H_8 OS$	1		-			2
		P.I.D. ions	3	7	2	4	4	20
		(The test	10	91	24	10	14	00
		Total	19	21	24	10	14	00

Subtotal, m/e 1-104, 2335 2312 2503 732 313 120 17 10 8342

<u>m/e</u>	<u>Formul</u>	a Structural Significance	<u>1</u>	$\frac{\text{Relat}}{2}$	tive P <u>3</u>	$\frac{1}{4}$	abili <u>5</u>	<u>.ty</u> 6	<u>7</u>	8 <u>Total</u>
105.0340	C ₇ H₅O	PhCO + Y (Y = R,								
		-OR, -OCOR, X, etc.) Y _n PhCO-Y'(rearr.), PhCH O-Y	34	2						36
105.0704	C ₈ H ₉	PhCH ₂ O-1, Y_n -PhOH, etc. PhCH (CH ₃) \neq Y, CH ₃ PhCH ₂ \neq Y (Y= R, X, -OR,	1	9	5					15
		etc.), C_2 -Ph $\frac{1}{7}$ Y (Y= X, CH ₃) PhCh=CH $\frac{1}{7}$ CH ₂ OR -	4	5	6					15
		∔H₂ (rearr.), others	8	15	13					36
	Also:	C ₇ H ₇ N, C ₂ H ₂ Br, C ₃ H ₂ O ₂ Cl	4	4	1					9
		P.I.D. ions Other unclassified	5 4	1	4					6 9
		Total	60	37	29					126

C ₇ H ₆ O	HO(CH ₃) Ph($\frac{1}{7}$ H) $\frac{1}{7}$ Y*, HOPh($\frac{1}{7}$ H)CH ₂ $\frac{1}{7}$ Y				
	$(Y = OH, -CONH_{o}, Ph)$		3	2	5
$C_7 H_8 N$	$H_2NPhCH_2 \neq Y$,		•	-	
	etc.	6	3	1	10
	$PhNHCH_2 + Y;$				
	$H + R + NHPhCH_2 -$		•		10
	+Y (rearr.)	10	2		12
	YCO +NHPhCH ₂ + R				
	$(\mathbf{I} = \mathbf{R}, -\mathbf{R}\mathbf{Z})$	10	9	•	10
	(rearr.)	13	3	3	19
	CH ₃ -pyridyl-	•	~		10
	$CH_2 + R$, etc.	3	9	1	13
	PhCH ₂ NH-,				
	PhCH $(NH_2) + ,$				
	H_2N (CH ₃)Ph $\frac{1}{2}X$,				
	PhN (CH ₃) $+$ COR,				
	Ph-lactams, etc.	7	3		10
	C ₇ H ₆ O C ₇ H ₈ N	C ₇ H ₆ O HO(CH ₃) Ph($\frac{1}{1}$ H) $\frac{1}{1}$ Y*, HOPh($\frac{1}{1}$ H)CH ₂ $\frac{1}{1}$ Y (Y = OH, -CONH ₂ , Ph) C ₇ H ₈ N H ₂ NPhCH ₂ $\frac{1}{1}$ Y, etc. PhNHCH ₂ $\frac{1}{1}$ Y; H $\frac{1}{1}$ R $\frac{1}{1}$ NHPhCH ₂ $-\frac{1}{1}$ Y (rearr.) YCO $\frac{1}{1}$ NHPhCH ₂ $\frac{1}{1}$ R (Y= R, -RZ) (rearr.) CH ₃ -pyridyl- CH ₂ $\frac{1}{1}$ R, etc. PhCH ₂ NH-, PhCH (NH ₂) $\frac{1}{1}$, H ₂ N (CH ₃)Ph $\frac{1}{1}$ X, Ph-lactams, etc.	$\begin{array}{cccc} C_{7} H_{6} O & HO(CH_{3}) Ph(\frac{1}{7} H) \\ & \frac{1}{7} Y^{*}, \\ HOPh(\frac{1}{7} H)CH_{2} \frac{1}{7} Y \\ & (Y = OH, \\ -CONH_{2}, Ph) \\ C_{7} H_{8} N & H_{2} NPhCH_{2} \frac{1}{7} Y, \\ etc. & 6 \\ PhNHCH_{2} \frac{1}{7} Y; \\ H \frac{1}{7} R \frac{1}{7} NHPhCH_{2} - \\ & \frac{1}{7} Y (rearr.) & 10 \\ YCO \frac{1}{7} NHPhCH_{2} \frac{1}{7} R \\ & (Y = R, -RZ) \\ & (rearr.) & 13 \\ CH_{3} - pyridyl - \\ CH_{2} \frac{1}{7} R, etc. & 3 \\ PhCH_{2} NH -, \\ PhCH (NH_{2}) \frac{1}{7}, \\ H_{2} N (CH_{3}) Ph \frac{1}{7} X, \\ PhN (CH_{3}) \frac{1}{7} COR, \\ Ph-lactams, etc. & 7 \\ \end{array}$	$\begin{array}{cccc} C_7 H_6 O & HO(CH_3) \ Ph(\frac{1}{7} H) \\ & \frac{1}{7} Y^*, \\ & HOPh(\frac{1}{7} H)CH_2 \frac{1}{7} Y \\ & (Y = OH, \\ & -CONH_2, \ Ph) & 3 \\ C_7 H_8 N & H_2 NPhCH_2 \frac{1}{7} Y, \\ & etc. & 6 & 3 \\ PhNHCH_2 \frac{1}{7} Y; \\ & H \frac{1}{7} R \frac{1}{7} NHPhCH_2 - \\ & \frac{1}{7} Y (rearr.) & 10 & 2 \\ & YCO \frac{1}{7} NHPhCH_2 \frac{1}{7} R \\ & (Y = R, -RZ) \\ & (rearr.) & 13 & 3 \\ CH_3 - pyridyl - \\ & CH_2 \frac{1}{7} R, \ etc. & 3 & 9 \\ PhCH_2 NH -, \\ & PhCH (NH_2) \frac{1}{7}, \\ & H_2 N (CH_3) Ph \frac{1}{7} X, \\ & PhN (CH_3) \frac{1}{7} COR, \\ & Ph-lactams, \ etc. & 7 & 3 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

<u>m/e</u>	<u>Formula</u>	Structural Significance	<u>1</u>	$\frac{Pro}{2}$	$\frac{\text{blative}}{\frac{3}{2}}$	5 Total
106.0782	C ₈ H ₁₀	CH ₃ PhCH + Y + H, PhC (cyclo-R) + Y + H PhCH (CH ₃) + Y + H (rear	rs.) 1	6	6	13
	Also: C P	₂H₃Br∔XY, C₂H₃Br∔Hy, yridyl-CO-	1	3	2	6
		P.I.D. ions Other unclassified Total	$\frac{3}{4}$	$\frac{6}{2}$	$\frac{3}{1}$	12 7 107
107.0497	C7H7O	HOPhCH ₂ \neq Y (Y= R, -COR HOPhC \neq R ₃ , HOPhCH \neq F	k); R ₂			
		(rearrs.) HOPh(CH ₃) + Y* Y + OPh(CH ₃) + Y* (Y= R, -RY') (rearr.); CH ₃ PhO + RY (108 is large	4 er) 2	8	7 5	19 15
		Y \downarrow OPhCH ₂ \downarrow Y' (Y= R, -COR, X) (rearr.); PhOCH ₂ \downarrow Y (Y= -COR, -F 94 is large) PhCH (OH) \downarrow RY: PhCH ₂ O4	τχ; 5-8Υ.	2	7	14
		$Y \neq OCH_2Ph \neq Y'$ (rearr.), $X \neq PhCH_2OH$	9	8	4	21
	Also: C H a C	² ₂ H ₄ Br, $C_3H_4O_2Cl$, C_7H_9N , ISC ₂ H ₄ OC ₂ H ₄ + OR, linolenic cid, ClCH ₂ Si (CH ₃) ₂ + R, ¹ ₆ H ₇ N ₂	4	9	7	20
		P.I.D. ions Other unclassified Total	$\frac{12}{\frac{2}{38}}$	$\frac{4}{3}$	$\begin{array}{c} 2\\ \underline{1}\\ 33 \end{array}$	$\frac{18}{\frac{6}{113}}$
108.0449	C _e H _e ON	$H_{s}NPhO + C_{s}H_{s}$				

100.0449		$\Pi_2 \Pi \Gamma \Pi O = O_2 \Pi_5,$						
		RCO + NHPhO + R' (rearr.),						
		pyridyl-CHOH 🕂	5	2				7
108.0575	C ₇ H ₈ O	$CH_{2}PhO \neq Y \neq H'(Y=R, -COR,$						
		-RY') (rearr.)	3	4	1			8
		$PhCH_{2}O \neq Y \neq H$ (Y= -COR,						
		-CH,C,H,) (rearr.),						
		PhOCH, \neq ROH (rearr.),						
		C ₂ -quinones		2	1	3	2	7
		In Mass Spectral Correlations; McLafferty, F	Ŧ.;					

Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

<u>m/e</u> Formula Structural Significance Relative Brobability										
			<u>1</u>	2	<u>3</u>	4	5	<u>6</u>	7	Total
108.0575	C ₇ H ₈ O ((Also: C ₆ Hi (r (r	Cont'd.) ,H₄S (benzothiazoles, SPh∔Y), BrC₂H₄∔COOR earr.), C₃H ₇ SS┼R┼H earr.), R-pyrroles	ł	3	2	2	1			8
		P.I.D. ions	9	5	3	4	5			26
		Other unclassified Total	$\frac{1}{18}$	$\frac{2}{17}$	_1 8	$\frac{1}{10}$	$\frac{3}{11}$			$\frac{8}{64}$
108.9612	C ₃ H ₃ Cl ₂	$C_{3}H_{3}Cl_{2} \neq HX_{2},$ $C_{2}H_{2}Cl_{2} \neq X$	6	1	1					8
109.0289	$C_6H_5O_2$	HOPhO $\frac{1}{7}$ R, CH ₃ $\frac{1}{7}$ OPhO $\frac{1}{7}$ R $\frac{1}{7}$ H		-	-					-
109.0449	C ₆ H ₇ ON	(rearr.), CH_3 -fury1-CO H ₂ NPhO \ddagger Y \ddagger H, HOPhNH \ddagger Y \ddagger H (Y= R,)- I	4		2				.1
109.1016	$C_8 H_{13}$	-COR) (rearrs.) See $C_7 H_{11}$ (<i>m/e</i> 95)	1 4	1 1	3 3					5 8
	Also: C _s R (r	ClF_2 , PhS \ddagger , FPhCH ₂ \ddagger \ddagger PO (OC ₂ H ₅), -O \ddagger R \ddagger H earr.), ClPh \ddagger HX ₂ , C ₇ H ₉	, 07	7	6					20
		P.I.D. ions	4	4		2				10
		Other unclassified Total	$\frac{2}{25}$	18	13	$\frac{2}{6}$				$\frac{4}{62}$
110.0367	$C_6 H_6 O_2$	HOPhO $\frac{1}{7}$ R $\frac{1}{7}$ H, HOPh($\frac{1}{7}$ Y)-O $\frac{1}{7}$ R	2		1	1	1			6
110. 1094	$\rm C_8H_{14}$	$C_6 H_{11} C_2 H_3 (+ H) + OR,$ etc.	2	2	1	1	2		2	10
	Also: C C C	,H ₁₀ O, ClPh∔YY', .H ₅ Se∔R∔H (rearr.) .H₄Cl ₂ , CBrF	1	2	3	3				9
		P.I.D. ions	5	8	4	2	5	1	4	29
		Other unclassified	$\frac{1}{19}$	12	$\frac{2}{11}$	<u>2</u> 0	$\frac{3}{11}$		2 8	$\frac{10}{64}$
		American Chemic	al	14	11	J		1	U	UT
		THIS PART AND A THE PARTY AND A	M P							

Society Library In Mass Spectral Offentions, McLafferty, F.; Advances in Ch**Washington**an Di Cni 20036 ty: Washington, DC, 1963.

<u>m/e</u>	<u>Formula</u>	ormula Structural Significance		Re Pro	elativ babil				
			<u>1</u>	2	3	4	<u>5</u>	Total	
111.0001	$C_6 H_4 Cl$	ClPh + Y*, ClPh (+Y)+ - CHROH (rearr.)	2	6	10	5		23	
111.0268 111.0446	C ₆ H ₇ S C ₆ H ₇ O ₂	CH_3 -thiophene- $CH_2 \neq R$ Adipates (RO $\neq COC_2$ H-CO \neq (H) OR?)	9		1	3		13	
		etc.	´ 2	1	2	1		6	
	Also: C ຜ C	${}_{8}H_{15}$, $C_{3}H_{5}Cl_{2}$, $(CH_{3})_{2}$ -bor- kint R, $C_{3}H_{2}ClF_{2}$, $CHBrF$, ${}_{7}H_{11}$ O, OP (OCH_{3}) ${}_{2}$ + R + H $_{2}$,							
	th	liophene-CO 🕂	11	5	7	12		35	
		P.I.D. ions Other unclassified	1	2	1 5	1 2		5 _7	
		Total	25	14	26	24		8 9	
112.0160	$C_5 H_4 O_3$	Furan-COO $\frac{1}{7}$ R $\frac{1}{7}$ H (rearr.)	1	3				4	
112.1126	C_7H_{14} N	CH_3 -piperidine- $CH_2 \neq R$, cyclohexyl-N ($\neq R \neq H$) -	-	Ū				-	
112.1251	C ₈ H ₁₆	$CH_2 \neq R, etc.$ H $\neq C_8H_{16} \neq Y$ (Y= -OCOR, -OH; R)	2	2	1	3	3	4 7	
	Also: F C -(PhO ∔ R ∔ H (rearr.), lPh ∔ Y* ∔ H (rearr.), C ₃ F ₄ , COC₄H ₈ CO-, etc.	5	1	3	2	1	12	
		P.I.D. ions	6	7	2	7	8	30	
		Other unclassified Total	14	13	$-\frac{1}{7}$	12	12	$\frac{1}{58}$	
112.9281	CH ₃ SiCl ₂	² CH ₃ SiCl ₂ -, H $\frac{1}{2}$ R $\frac{1}{2}$ CH ₂ SiCl ₂ $\frac{1}{2}$ (rearr.)	4	1			2	7	
113.0014 113.0238	$\begin{array}{c} \mathrm{C_3}\mathrm{HF_4}\\ \mathrm{C_5}\mathrm{H_5}\mathrm{O_3} \end{array}$	Furyl-COO $+R \neq H_2$ (rearr.),	2	1	3		1	3	
113.0966 113.1329	C 7H13 O C8 H17	Cyclic ethers, $C_6 H_{13} CO-C_8 H_{17} + X$		1	J	1 1	1	22	
	Also: (C F C	$CH_3)_2$ -piperazine-, CHBrF, P_2Ph -, C_2H_2F , CF ₃ S-, P_2ClF_2O , $C_2H_3Cl_2O$	1	1	3	2	1	8	

48

<u>m/e</u>	Formula							
			1	2	3_	4	<u>5</u>	<u>6</u> <u>Total</u>
113.1329	C ₈ H ₁₇ (Cont'd.)				_			
		P.I.D. ions			3	4	2	9
	(Other unclassified	5	1		5	6	17
		Total	12	5	9	13	13	52

$C_6 H_{12} ON$	$HO - RN(CH_2 +)C_2H_2R' + HOH$							
	$(\Sigma R = C_{3} H_{7})$			2				2
C, H, N	See $C_{e} H_{14} N (m/e 100)$	3	4		1		2	10
. 10	P.I.D. ions	1	1	1	3	4	2	12
	Other unclassified		1	3			1	5
	Total	4	6	6	4	4	5	29
	С ₆ H ₁₂ ON С ₇ H ₁₆ N	$\begin{array}{c} C_{6}H_{12}ON HO - RN(CH_{2} +)C_{2}H_{2}R' \neq HOH\\ (\Sigma R = C_{3}H_{7})\\ C_{7}H_{16}N See C_{6}H_{14}N (m/e \ 100)\\ P.I.D. ions\\ Other \ unclassified\\ Total \end{array}$	$\begin{array}{c} C_6 H_{12} \text{ ON } \text{ HO - RN}(CH_2 +) C_2 H_2 R' + \text{HOH} \\ (\Sigma R = C_3 H_7) \\ C_7 H_{16} \text{ N} \text{See } C_6 H_{14} \text{ N} (m/e \ 100) & 3 \\ \text{ P.I.D. ions } & 1 \\ \text{ Other unclassified} \\ & \text{ Total } & 4 \end{array}$	$\begin{array}{c} C_{6}H_{12}ON HO - RN(CH_{2} +)C_{2}H_{2}R' \neq HOH\\ (\Sigma R = C_{3}H_{7})\\ C_{7}H_{16}N See C_{6}H_{14}N (m/e \ 100) \qquad 3 4\\ P.I.D. ions \qquad 1 1\\ Other \ unclassified \qquad - \frac{1}{6}\\ Total \qquad 4 6 \end{array}$	$\begin{array}{c} C_{6}H_{12}ON \ HO - RN(CH_{2}+)C_{2}H_{2}R' \neq HOH \\ (\Sigma R = C_{3}H_{7}) & 2 \\ C_{7}H_{16}N \ See C_{6}H_{14}N \ (m/e \ 100) & 3 \ 4 \\ P.I.D. \ ions & 1 \ 1 \ 1 \\ Other \ unclassified & 1 \ 3 \\ Total & 4 \ 6 \ 6 \end{array}$	$\begin{array}{c} C_{6}H_{12}ON \ HO - RN(CH_{2} +)C_{2}H_{2}R' + HOH \\ (\Sigma R = C_{3}H_{7}) & 2 \\ C_{7}H_{16}N \ See C_{6}H_{14}N \ (m/e \ 100) & 3 \ 4 & 1 \\ P.I.D. \ ions & 1 \ 1 \ 1 \ 3 \\ Other \ unclassified & -\frac{1}{4} \ \frac{3}{6} \ -\frac{1}{6} \ 4 \end{array}$	$\begin{array}{c} C_{6}H_{12}ON \ HO - RN(CH_{2}+)C_{2}H_{2}R' \neq HOH \\ (\Sigma R = C_{3}H_{7}) & 2 \\ C_{7}H_{16}N \ See C_{6}H_{14}N \ (m/e \ 100) & 3 \ 4 & 1 \\ P.I.D. \ ions & 1 \ 1 \ 1 \ 3 \ 4 \\ Other \ unclassified & -\frac{1}{4} \ \frac{3}{6} \ -\frac{1}{6} \ \frac{3}{4} \ 4 \end{array}$	$\begin{array}{c} C_{6}H_{12}ON \ HO - RN(CH_{2} + C_{2}H_{2}R' + HOH \\ (\Sigma R = C_{3}H_{7}) & 2 \\ C_{7}H_{16}N \ See C_{6}H_{14}N \ (m/e \ 100) & 3 \ 4 & 1 \ 2 \\ P.I.D. \ ions & 1 \ 1 \ 1 \ 3 \ 4 \ 2 \\ Other \ unclassified \\ Total & 4 \ 6 \ 6 \ 4 \ 4 \ 5 \end{array}$

115.0547	C ₉ H ₇	Indenes, (CH ₂ =CH-), Ph		2		1		3
	5 1	Naphthyl-Y $(\tilde{Y} = -OR, -NR_2, R)$		6	6	3	2	17
		$PhC_{3}H_{4}Y, PhC_{3}H_{3}YY'',$						
		indanyl-Y, $YPhC_{3}H_{4}Y'$ (Y=						
		$X, -OCOR, -NO_2, Ph, R,$						
		etc.)	4	5	18	13	4	44
		Ph-Ph-Y (Y= -OR, -NO ₂ ,						
		-OCOR), Ph-R-Z, etc.			1	6	12	19
115.0758	$C_{6} H_{11} O_{2}$	Aliphatic esters, etc. (see				-		
		$C_5 H_9 O_2$)	1	1		2		4
115.0996	$C_6 H_{13} ON$	$C_4 H_{10} NCOCH_2 + R + H$	_					
		(rearr.)	2	1		1		4
115.1122	C7 H15 O	ROC (R'R'') + Y,						•
		HOCRR' \neq Y ($\Sigma R = C_6 H_{15}$)	1		1	1		3
	Also: C ₂	H_2Cl_2F, C_8H_5N				1	1	2
		P.I.D. and other unclassified	1	6	6	5	3	21
		Total	9	21	31	34	22	117

115.9641	C ₂ ClF ₃		1		1			1	3
116.0500	C ₈ H ₆ N	$Y + CH_2 PhCN, PhCH(CN) + Y,$							
		$Y \neq PhCH_2CN, PhCYY'CN$	0	٨	1	1	0		10
116.0626	C. H.	(rearr.) $(Y = R, X)PhC. H. \frac{1}{2} HY PhC. H. \frac{1}{2} YY$	2	4	T	T	4		10
110.0020	09118	$(Y = X, R, -NO_2, -NH_2),$							
		etc.	1	1	1		6	5	14

m/e	Formula Structural Significance]	Rela	tive	: •			
			1	$\frac{P}{2}$	$\frac{roba}{3}$	<u>,0111</u> 4	<u>ty</u> 5	6	Total
			-	Ξ	Ξ	-	-	-	
116.0626	C ₉ H ₈ (Co	ont'd.)							
		Naphthyl-Y (Y= -NHR, -OR);			1	3	2	2	8
1 16. 1075	C _e H ₁₄ NO	Amino alcohols, ethers			-	2	2	1	3
	0 14	P.I.D. and other unclassified	_5	_2	_5	_3	_4	_3	22
		Total	9	7	9	9	14	12	60
116.9066	CC1.		11	5	6	1			23
117.0704	C ₉ H ₉	$CH_{3} (PhC = C) \neq Y,$ $C_{2}H_{3}PhCH_{2} \neq Y,$ $PhCH_{2}CH_{2} + Y indenvi \neq Y$,	·	•	-			
		(Y=R, X, -COOH, etc.) (Ph-C ₃) \neq HYY': (PhC ₃) \neq H ₂ Y	17	7		6			30
117.0915	$C_6H_{13}O_2$	(Y = X, R, -OR, etc.) See C ₅ H ₁₁ O ₂ (<i>m/e</i> 103)	1	2	3 4	5			11 4
	Also: PC	$U_1^{I_2}$, $U_2^{I_1}$, $U_5^{I_3}$, $U_5^{I_3}$, H_5O_4 (maleate)	1	1	3	1			6
		P.I.D. ions	5		2	2			9
		Other unclassified		_1	_1	_3			5
		Total	35	16	19	18			88
118.0782	C ₉ H ₁₀	PhC ₃ H ₅ \neq HY (Y= OR; R, fused ring), PhC ₃ H ₅ \neq Y (Y= R, X); Y \ddagger CH ₂ PhC ₂ H ₄ \ddagger Y' H O (mise) C H N (mise);	2	1	6	1	4	2	16
	Also: C_{i}	$_{5}^{B}H_{12}O_{2}N$ (misc.); $C_{8}H_{8}N$ (misc.);	2		3	1	2	6	14
		P.I.D. ions Other unclassified Total	7 11	8 <u>1</u> 10	$\frac{1}{\frac{4}{14}}$	2 _2 6	$\frac{5}{2}$ 13	2 10	25 <u>9</u> 64
118,9920	Co Fo	(m/e 69 usually base peak)		8	1				9
119.0497	$C_8^{2}H_7O$	$CH_3 PhCO + Y$; dihydrobenzo-		v	•				•
	- •	furan + Y Others	5	2 4	2 3				9 7

<u>m/e</u>	<u>Formula</u>	Structural Significance	H Pi	Relative Probability					
			1	2	3	4	Total		
119.0860	C ₉ H ₁₁	RPhC(R') $\frac{1}{1}$ Y (Σ R=C ₂ H ₇), Ph (CH ₃) ₄ Others (multiple cleav.,	21	7	6		34		
		rearr.) (see $C_8 H_9$)	1	5	5		11		
	Also: C	${}_{3}$ H ₄ Br, C ₇ H ₅ ON, CH ₂ Cl ₃ , ${}_{7}$ H ₃ O ₂	5	1	1		7		
		P.I.D. ions Other unclassified	1	13 2	7 5		21 8		
		Total	$\frac{1}{34}$	<u>42</u>	$\frac{0}{30}$		106		
120.0211	$C_7 H_4 O_2$	$Y \downarrow OPhCO \downarrow Z$ (Y= H, -COR, R; Z= -OR, H); dihydro-	0	9		9	14		
120.0449	C ₇ H ₆ ON	Coumarins $H_2 NPhCO \neq R,$ $Y \neq PhNHCO \neq R,$ (rearr.), $o-H \neq CH_2 PhNO \neq O.$	9	3		2	14		
120.0575	C ₈ H ₈ O	H ₂ NPhCO \ddagger Y PhCOCH ₂ \ddagger R \ddagger H (rearr.), PhC - (C - OH) \ddagger YH,	3	1	1	2	7		
120.0813	C ₈ H ₁₀ N	HOPh (cyclo-R) + Y, PhOC ₂ + HY See C_7H_8N (m/e 106)	16	2 7	6 4	1	8 28		
120.0938	C ₉ H ₁₂	$C_2 Ph \neq Y \neq H,$ CPhC (CH ₃) $\neq Y \neq H$ (rearrs.)			2	1	3		
	Also: C P C	₂ HOBr (CH ₂ BrCOOR), hSi(CH ₃) \neq RR', C ₃ H ₅ Br, H ₂ CICOOCH (CH ₃)-	3	1	1	1	6		
		P.I.D. ions	2	7	7	4	20		
		Other unclassified Total	$\frac{2}{35}$	$\frac{1}{21}$	$\frac{1}{16}$	$\frac{2}{19}$	$\frac{5}{91}$		
120.9289	C ₂ H ₂ OB1	$r \operatorname{BrCH}_2\operatorname{CO} \frac{1}{7} Y (Y = -OR, R)$	2	4			6		
121.0209	C7115U2	$-OR); O_2N \neq PhCOO \neq R$	e	A	7		17		
121.0653	C_8H_9O	See $C_7 H_7 O$ (<i>m/e</i> 107)	8	10 10	15		33		
	Also: C	$_{8}$ H ₁₁ N, C ₃ H ₆ Br, C ₉ H ₁₃							

(CH₃O)₃Si-, ClC₃H₆OC₂H₄-, 6 7 ferrocene Spectral Correlations; McLafferty, F.;

3 Advances in Chemistry; American Chemical Society: Washington, DC, 1963. 51

16

m/e	Formula	Structural Significance		F	telat	ive					
			1	$\frac{PT}{2}$	<u>3</u>	<u>4</u>	¥ 5	6 7	[otal		
121.0653	C ₈ H ₉ O ((Cont'd.) P.I.D. ions Other unclassified Total	$\frac{7}{2}$	$-\frac{9}{1}$	6 2 33	-	-		22 <u>5</u> 99		
122.0367 122.0731	С ₇ Н ₆ О2 С ₈ Н ₁₀ О	PhCOO $\frac{1}{4}$ R $\frac{1}{4}$ H; R'OOC $\frac{1}{4}$ PhCOO $\frac{1}{4}$ R(rearrs.) See C ₂ H ₂ O;	I	2		1	2		5		
	0 10	HOPhCH(CH ₃)‡R‡H (rearr.)	4	1	1	1	1		8		
	Also: C, R C ₂	, H ₈ ON, O ₂ NPh 1 CHO, -pyrroles, C ₄ H ₉ SS 1 R (rearr.) ₂ H ₃ OBr	, 4		1	1	1	1	8		
		P.I.D. ions Other unclassified	6	$\frac{11}{2}$	9 _ <u>1</u>	2	5	4 _2	$\frac{37}{5}$		
123.0446 123.0809	С ₇ Н ₇ О ₂ С ₈ Н ₁₁ О	PhCOO \ddagger R \ddagger H ₂ (rearr.); (HO) ₂ PhCH ₂ \ddagger R, CH ₃ OPh (OH) \ddagger Y Sesquiterpenones, etc.	2	4 1	3 1	2 1	1 2		10 7		
	Also: C C O: -($H_5Cl_2, C_9H_{15}, C_3HOCl_2, H_3OPhNH + (rearr.), C_2HBrF, PNPh + Y + H (Y= -COOH, OCH_3) (rearr.), PhCH_2S +$	5	5	4	1	1		16		
		P.I.D. ions Other unclassified Total	<u>1</u> 8	5 15	5 13	2 3 9	2 3 9		$\frac{14}{7}$		
124.	C ₉ H ₁₆ , C	$H_3PhCl \neq Y_2, C_7H_8O_2,$ $_8H_{12}O, H_2NPhCl \neq HY_2$ P.I.D. ions Other unclassified Total	3 4 1 8	2 3 <u>1</u> 6	1 _1 _2	2 5 7	2 4 	3 3 <u>1</u> 7	13 19 $-\frac{4}{36}$		

<u>m/e</u>	Formula	Structural Significance	<u>1</u>	Re <u>Pro</u> 2	elativ babi <u>3</u>	ve <u>lity</u> <u>4</u>	<u>5 1</u>	otal
125.0158	C7H6C1	ClPhCH ₂ \ddagger Y (Y= R, X), Cl (CH ₃) Ph \ddagger Y (Y=X, -NO ₂), PhCHCl \ddagger R, etc.	16	5	4			25
	Also: (C C ₄	$H_3)_2$ -thiophenyl-CH ₂ $\frac{1}{7}$ etc., H_7Cl_2 , C ₃ Cl ₂ F, C ₂ H ₃ Cl ₂ CO-	7	6	4			17
		P.I.D. ions Other unclassified Total	$\frac{4}{27}$	$\frac{3}{1}$	$\frac{5}{13}$			3 <u>10</u> 55
126.	ClPhCH Cl (r -C	=R ₂ ∔ H, C ₂ H ₅ -thiophene- H ₂ ∔ R ∔ H, ClPhCH ₂ ∔ R ∔ H earrs.), naphthyl ≠ HY (Y= X, COOH) P.I.D. ions Other unclassified Total	2 3 	$\frac{10}{\frac{2}{12}}$	1 3 1 5	2 _2 _4	3 1 <u>3</u> 7	8 17 10 35
126.9049 127.0188 127.0359 127.0547	I C ₆ H ₆ NCl C ₇ H ₅ F ₂ C ₁₀ H ₇	Iodo compounds ClPhNH \div COY \div H (rearr.) (see C ₆ H ₇ N) PhCF ₂ \div R, CHF ₂ Ph \div R Naphthyl \div Y (Y= X, -COOH, -COOR)	4 2	6 2 3	3 1 1 5	3 3		12 7 3 11
	Also: C ₂ Cl H (r	$H_5OCOC_2 H_2CO-, SF_5,$ $PhO \ddagger R, C_3 H_3Cl_2O,$ $\ddagger R \ddagger OPO (OC_2 H_5) O \ddagger R \ddagger H_2$ earr.) P.I.D. ions	2	4	2	1		9 16
		Other unclassified Total	$\frac{6}{14}$	$\frac{1}{22}$	<u>1</u> 19	$\frac{5}{16}$		$\frac{13}{71}$

128.

 $C_{g}H_{18} N (see C_{6}H_{14} N), C_{6}H_{5}OC1$ [ClPhO + R + H, HOPh (Cl) + Y $(rearrs.)], C_{10}H_{g}, C_{9}H_{6}N$ (reince)

(quinolines)

64

6 7

23

<u>m/e</u>	Formula	Structural Significance]	Rela	tive			
			1	$\frac{P}{2}$	3	4	<u>y</u> 5	6 '	Total
128.	C.H.N (C	cont'd.)	_			_			
	- 818 (-	P.I.D. ions	6	2	5	3			16
		Other unclassified			1	2			3
		Total	12	6	12	12			42
128.8931	CHBr ⁸¹ Cl	CHBr81Cl + Y, (Y = X, R)	1		2	1		1	5
128.9152 128.9719	CBrF ₂ C. HClF.	$\operatorname{CBrF}_2 \neq Y$ (Y = X, R) C_ HClF_ $\neq Y$ (Y = X, R), etc.	3	1	2 2	1	1	1	9 5
129.0551	C ₆ H ₉ O ₃	$RO + COC_4 H_8COO + R + H$	-		-				0
129.0704	C ₁₀ H ₉	(rearr.) (adipates) Indenes, R-Ph-R (R= unsatd.,	5	I					0
	10 0	cyclic) etc.	_		4		1	c	5
129.0915	$C_7 H_{13} O_2$	Esters, acids, etc.	S				2	0	0
190 1970	C H O	$(\text{see } \dot{C}_5 H_9 O_2)$	1	1	2	1		1	5
129.1219	C ₈ n ₁₇ O	$HOCKR + I (2R = C_7 H_{16})$	T			1		1	3
	Also: C ₉ (C	H_7N , -CH ₂ OSO ₂ Cl, C ₂ Cl ₃ , H_7O) ₂ B-;	3		2			1	6
		P.I.D. and other unclassified	6	_5	_2	_5	3	_5	<u>26</u>
		Total	22	8	16	9	7	16	78
130.0656 130.0782 130.1231	C ₉ H ₈ N C ₁₀ H ₁₀ C ₇ H ₁₆ NO	Indole-CH ₂ ⁺ , methylindole ⁺ Y C ₂ H ₅ C(Ph)(CN) ⁺ R Ph-butenes, CH ₃ -indanes, cyclohexyl-Ph-, etc. Amino alcohols	, 5 1 1	3 1 1	1 3	2	1	1 1	10 9 2
	Also: C	$_{2}$ HCl ₃ , C ₃ H ₂ ClF ₃	2					1	3
		P.I.D. ions Other unclassified Total	$\frac{7}{1}$ $\frac{1}{17}$	$9\\1\\15$	2 _3 _9	_ <u>3</u> 5	6 _1 _8	$\frac{4}{3}$	28 <u>12</u> 64
130.9920 131.0497	С ₃ F ₅ С ₉ Н 7О	PhCH=CHCO $\frac{1}{7}$ Y (Y= R, -OR); (PhO) C $_{2}$ H _x	5 10	4 2	4	4			17 15

<u>m/e</u>	Formula	Structural Significance		R Pro	e <mark>lati</mark> obabi	ve lity	
			<u>1</u>	2	3	4	5 Total
131.086 0	С ₁₀ Н ₁₁	Tetrahydronaphthyl-, methyl- indanes, $(CH_3)_2(PhC=C) \neq Y$ (Y=R, X, etc.); $(PhC_4) \neq HY_2$	9	1	9	6	25
	Also:	$C_2 H_2 Cl_3, C_4 H_4 Br, C_5 H_{11} O_2 Si, C_5 H_{15} Si_2, C_7 H_{15} O_2$	3	3	1	6	13
		P.I.D. ions Total	27	$\frac{7}{17}$	<u>5</u> 20	$\frac{5}{23}$	$\frac{17}{87}$

132.0575	C ₉ H ₈ O	$(PhC - C) \neq YY',$						
		H ₃ C-()+YY',						
132, 0813	СНИ	C=C-CPh (OH) \ddagger YY' (Y=X, -COOR, R, H) (C=CPhCNH) \ddagger Y	1	3	1	1	1	7
102.0010	0 ₉ 11 ₁₀ 10	(CPhN-C-C) + Y, (NPhCC=C) + Y etc. (Y= X,						
		-COR, R)	3	2	1	1		7
132.0938	C ₁₀ H ₁₂	$(CH_3)_2$ PhCHCH $_2 \neq$ HOH, Tetralins, etc.	2	1	1	3		7
	Also: C C	${}_{8} H_{6} NO, C_{2} Cl_{2} F_{3}, C_{6} H_{14} O_{2} N, $ ${}_{5} H_{7} ONCl, C_{8} H_{4} O_{2}, C_{6} H_{2} Cl_{2}$	1	2	2	4	3	12
		P.I.D. ions	7	15	_4	_2	_5	<u>33</u>
		Total	14	23	9	11	9	66

133.0653	C ₉ H ₉ O	C_2 -PhCO + Y; 2, benzopyran + Y	3-dihydro- , etc.	5	1	1	7
		$\frac{PhOC_{3}H_{4}+Y}{PhO+Y}, C_{3}H_{5}$	yclohexyl- PhO∔Y,				
		etc.	•	8	8	4	20
133.1017	C ₁₀ H ₁₃	RPhC(R'R'') ¥Y	$(\Sigma R = C_3 H_9)$	2	6	2	20
		(see C ₈ H ₉)	eav., rearr.)		5	1	6
	Also: C	C ₈ H ₇ ON (acetanilid	es),				
	C	$C_8 H_5 O_2$ (phthalides)	etc.),				
	C	C. H. O. Si, C. H.BI	, CF.S.,				
	C	$C_{3}H_{2}F_{5}, C_{9}H_{11}, N, 0$	C ₂ HCl ₂ F ₂	7	7	1	15
		In Mass Spectral Cor	relations; McLaffert	y, F.;			

Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

<u>m/e</u>	Formula	Structural Significance	<u>1</u>	$\frac{Pr}{2}$	telat obal	$\frac{\text{bility}}{4}$	<u>6 Total</u>
133. 1017	C ₁₀ H ₁₃ (Cont'd.) P.I.D. ions Other unclassified Total	$\frac{2}{1}$	$\frac{10}{\frac{1}{38}}$	$\frac{3}{3}$		15 _5 88
134.0064 134.0605	C ₇ H ₄ NS C ₈ H ₈ ON	Benzothiazole $\frac{1}{7}$ Cl $o - H + C_2 H_4$ PhNO $\frac{1}{7}$ O, PhN (CH ₃) CO $\frac{1}{7}$ R,				1	1
134.0731	C ₉ H ₁₀ O, C ₈ H ₆ O ₂ ,	$CH_{3}CONHPh \neq Y$ H $\downarrow OPh (CH_{3}) CO \downarrow OR,$	1		2		3
134.0969	C ₉ H ₁₂ N	$H \neq (PhCH_2O) C_2H_3 \neq OCOR_3$ etc. See $C_7 H_8N$ P.I.D. ions Other unclassified Total	2 6 4 13	3 $\frac{17}{\frac{2}{22}}$	$2 \\ 14 \\ \frac{8}{26}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 15 45 <u>11</u> 82
134 9810	C H Br	BrC H. 1P (P. CH.)					
104,0010	C4 118 D1	$BrC_4 H_8 + X$	9	3	1		13
135.0446	$C_8 H_7 O_2$	CH ₃ OPhC \ddagger Y, HOPh (-CHO) CH ₂ \ddagger Y, HOOCPhCH ₂ \ddagger , etc. PhN (COCH ₂) \ddagger B \ddagger H (rearr.	6	3	1		10
10010000		PhN (COCH ₂ $+$ R) $+$ R' (rearr.) [PhN (CHR $+$ R') $+$ COB" lorent	//	7	A		11
135.0809	C ₉ H ₁₁ O	See C_7H_7O ; PhOC $(C_2H_6) \ddagger$, PhCH ₂ OCH $(CH_3) \ddagger$	13	3	7		23
	Also: P	hSi (CH ₃) ₂ + , Cl ₃ Si + , C ₂ ClF ₄ [CH ₃) ₂ N] ₂ PO + NR ₂	, 5	3			8
		P.I.D. ions Other unclassified Total	$\frac{4}{3}$	9 28	5 <u>1</u> 19		$\frac{18}{4}$

m/e	Formula Structural Significance								
	<u></u>		1	$\frac{\mathbf{Pr}}{2}$	<u>oba</u>	4	<u>y</u> 5	6	Total
			-	-	-	_	_		
136.0080	C ₈ H ₅ Cl	C1- (PhC_2) \downarrow Z $(Z=Y_4, HY_2CH_3, Y_2, HY; Y=X, -NO_2)$			1		4	2	7
136.1251	C ₁₀ H ₁₆	Decahydronaphthyl- (137 is large), etc.	1	2	1	1	1	1	7
	Also: (se C ₈ C ₃	$\begin{array}{l} & e \ m/e \ 122) \ \mathrm{C_9 \ H_{12} O}, \ \mathrm{C_8 \ H_{10} ON}, \\ & \mathrm{H_8 \ O_2}, \ \ \mathrm{C_8 \ H_{12} Si}, \ \mathrm{C_5 \ H_{12} \ S}_{2}, \\ & \mathrm{H_5 \ OBr} \end{array}$	5	4	1	2	6	2	20
		P.I.D. ions Other unclassified	3	11	5	2	4 1	4	29 1
		Total	9	17	8	5	16	9	64
127 1220	C H	Decebudronenthyl. : etc	7		1	9			10
137.1329	C ₁₀ Π ₁₇	Decanyuronaphtnyi-, etc.	1		1	2			10
	Also: C B C	${}_{8}H_{9}O_{2}, Ph (Cl) (C=C)-, rC_{2}H_{4}OCH_{2}-, C_{5}H_{7}Cl_{2}, {}_{8}H_{11}ON$	2	2	3	6			13
		P.I.D. ions	2	15	7	3			27
		Total	11	17	11	11			50
138.	HOOCCH (1	Br∔R∔H, HOPhCOO∔R∔H rearrs.), CH ₃ PhCC1≢X ₂ , etc. P.I.D. ions Other unclassified Total	2 2 4	1 4 1 6	7 1 <u>1</u> 9	2 4 6	4 5 1 8		12 16 <u>5</u> 33
138.9950 139.0314	C7H₄ClO C8H8Cl Also: C	ClPhCO $\frac{1}{4}$ Y (Y= R, H, -OR) See C ₇ H ₆ Cl ¹¹ H ₇ , C ₃ H ₇ -thiophene-CH ₂ -,	8 13	1	15				9 19
	C	$_{3}$ H ₅ BrF, C ₂ H ₅ COCCl ₂ $+$ X	4	2	2				8
		P.I.D. ions Other unclassified Total	$\frac{1}{27}$	2 _2 7	$\frac{1}{10}$				$\frac{4}{44}$

57

m/e	Formula	Structural Significance	Relative Drobability					
			<u>1</u>	$\frac{PR}{2}$	3	<u>4</u>	<u>5</u> '	Total
140.0267	C ₇ H ₇ NCl	ClPhNHCH ₂ $\frac{1}{7}$ R, ClPhN($\frac{1}{7}$ COR)-CH ₂ $\frac{1}{7}$ R (rearr.)	5	1	2	1	1	10
	Also: C ₇ HC Cl	$\begin{array}{l} H_{5} \text{ OC1 } [CH_{3} \text{ OPhC1} \stackrel{1}{\neq} \text{HX,} \\ \text{OPh}(C1) CH \stackrel{1}{\neq} R_{2}], C_{6} H_{11} \text{ NR}_{2} \\ \text{HI} \end{array}$, 1	1		2	3	7
		P.I.D. ions Other unclassified	1	16 1	7	3	6	33 1
		Total	7	19	9	6	10	51
141.0704	C ₁₁ H ₉	Naphthyl-CH ₂ $\frac{1}{2}$ R, etc. PhOPhY (Y= H, X), PhPhOY (Y= H, R, -COR), O=C(OPh	7	5	1			13
		(rearrs. $-$ loss of CO?)	72	3	10			13
	Also: C. Pl	$_7$ H ₆ OCl (see C ₇ H ₇ O), CH ₂ I; hSO ₂ -, C ₂ H ₃ ClBr, (C ₄ H ₉) ₂ Al-	- 3	5	3			11
		P.I.D. ions Other unclassified	2 2	17 2	7 2			26 6
		Total	14	32	23			69
142.0078	C ₁₁ H ₁₀	Naphthyl-CH ₂ \ddagger R \ddagger H (rearr PhOPh etc. (rearrs.) (see	·.);	1	٨	9		7
142.0185 142.1595	C ₇ H ₇ OC1 C ₀ H ₂₀ N	$C_{11} H_9$) See $C_7 H_8 O$ (<i>m/e</i> 108) See $C_8 H_{14} N$ (<i>m/e</i> 100)	3 6	T	- 2	1 1		4 9
	- - <u>-</u>	P.I.D. ions Other unclassified	7	3	4	8 3		22 _3
		Total	16	4	10	15		45
								-
142.9222 142.9920 143.0860	C ₃ H ₂ Cl ₃ C ₄ F ₅ C ₁₁ H ₁₁	$C_{3}H_{2}Cl_{3}$ + X, $C_{3}H_{2}Cl_{3}$ + HX $C_{4}F_{5}$ + X, $C_{4}F_{5}$ + OR See $C_{10}H_{9}$ (<i>m/e</i> 129)	2 3 2 2	1 2 1		3 2	1 1	4 8 4
	Also: C; C; na	$_{2}$ H ₂ BrF ₂ , C ₄ H ₃ ClF ₃ , $_{2}$ H ₃ Br ⁸ Cl, CH ₃ OOC (CH ₂) ₆ $\frac{1}{7}$ aphthyl-O $\frac{1}{7}$	R, 4	1	2	2	2	11

<u>m/e</u>	<u>Formula</u>	Structural Significance		Re Pro	elativ babi	ve lity		
			<u>1</u>	2	3	4	<u>5</u>]	Total
143.0860	C ₁₁ H ₁₁ (C	ont'd.) P.I.D. ions Other unclassified	4 2 15	<u>1</u>	2	$\frac{7}{2}$	2	15 <u>9</u> 51
		Total	15	0	U	10	0	51

144.	Naphthyl-O 🕂 Y 🖡 H (rearr.) (Y= R,						
	salicyl); CH_3 -indole- $CH_2 + ,$						
	$C_8 H_{18} NO$ (amino alcohol),						
	$Cl_2Ph \neq (NO_2)_2, C_3OClF_3,$						
	PhC (CN) $(C_{2}H_{5}) +$	6	1	1	2	1	11
	P.I.D. ions	2	1	2	7	6	18
	Other unclassified				_1	_1	_2
	Total	8	2	3	10	8	31

144.9612	$C_6H_3Cl_2$ $Cl_2Ph + Y$ (Y = -NO ₂ , X, -COB)		2		8		10
145.1017	$C_{11}H_{13}$ See $C_{10}H_{11}$, m/e 131	7	ī	1	•		9
	Also: PhC(CN) $(C_2H_5) \stackrel{+}{+} R \stackrel{+}{+} H$ (rearr.) $C_3H_4Cl_3$, $CF_3Ph \stackrel{+}{+} X$, CH_3COOCH_2CH (OOCCH ₃) -) 4	1	7	1		13
	P.I.D. ions Other unclassified	$\frac{1}{\frac{3}{15}}$	$\frac{6}{4}$	$\frac{3}{11}$	$\frac{3}{4}$		13 <u>11</u> 56
	1041	10			10		
146.0731	$C_{10}H_{10}O + C_{3}-PhCO + Y (Y=OH, -CHCIP etc.)$	3		1	1		5
	Also: $C_{11}H_{14}$ (145 or 147 larger), $O_2N \neq PhCl_2 \neq R \neq H_2$ (rearr.)	U	3	2	1	1	7
	P.I.D. ions	8	7	6	1	3	25
	Other unclassified	1	2	10			0 40
	TOTAL	12	12	10	J	Ð	44

12 12 10

Total

m/e	Formula	Structural Significance		R	elativ	7e		
			<u>1</u>	$\frac{\mathbf{pro}}{2}$		4	5 7	Fotal
146.9625 147.0461	C ₃ ClF ₄ C ₅ H ₁₅ Si ₂ C	$(CH_3)_3$ SiOSi $(CH_3)_2$ - (often formed in inlet from other	6	1	1	2		10
147.0809 147.1173	C ₁₀ H ₁₁ O C ₁₁ H ₁₅	trimethylsilanes) (148, 66, 73 often large) See $C_9 H_9O$ (<i>m/e</i> 133) See $C_{10} H_{13}$ (<i>m/e</i> 133)	4 1 13	2 3	6 1	3		4 12 17
	Also: Bo Cl C	enzothiophene -CH ₂ +, H ₃ COPhCO-, CBr ^{an} ClF, ₂ F ₅ -CO+	5		4	1		10
		P.I.D. ions Other unclassified Total	$\frac{1}{30}$	2 	$\frac{\frac{2}{1}}{15}$	1 _1 _8		5 <u>3</u> 61
148.0524	C ₉ H ₈ O ₂	PhCH=CHCOO + R + H (rearr.) (133 is base peak)		2	1		1	4
	Also: C C	10H14N, C10H12O, H2=CHPh (NO2)-, C2Cl3F	1	2	1	1	3	8
		P.I.D. ions	3	19	10	6	5	43
		Total	4	$\frac{1}{24}$	$\frac{1}{13}$	8	$\frac{1}{10}$	- <u>4</u> 59
149.02 3 8	С ₈ Н ₅ О ₃	Phthalates; terephthalates						
149.0966	C ₁₀ H ₁₃ O	(rearr.)]; HOOCPhCO \ddagger Y (See $C_7 H_7 O$, m/e 107)	11 3	3 2		2		14 7
	Also: C C H (s (C	H_9O_2 (see m/e 135), H_3 PhSi (CH ₃) ₂ -, $_3$ NPhN (C ₂ H ₈) CH ₂ -, C ₁₀ H ₁₂ OP ee m/e 135), R + CH ₂ OSi - OC_2 H ₅) ₂ + OR (rearr.), $C_2 = 0$	8	5		9		19
	F	$D_3 Ur_2^{-}, U_4 \Pi_6 UDr$	-1		۵ ۵	4 0		10
		Other unclassified	_2	1	• 	1		4
		Total	21	18	8	7		54

	Tommula	Structural		Rela	tive I	Proba	<u>bility</u>			
<u>m/ e</u>	Formul	Significance		2	<u>3</u>	4	5	<u>6</u>	7	8 Total
150.0191	C ₇ H ₄ NO C ₈ H ₈ NO	3, O2NPhCO † Υ O2 (see C ₇ H ₈ O); O2NPhCH (CH3) †	9	2						11
	Also:	$NCS-PhO + CH_3$			1					1
		P.I.D. ions Other unclassified	2	12 3	11 3	10 				35 6
		Total	11	17	15	10				53

Subtotal, m/e 1-150 3217 3114 3167 1135 538 197 25 10 11403

150.9329	C ₂ Cl ₂ I	3	3	4	3	2		12
151. 0758	C ₉ H ₁₁ C C ₈ H ₇ O	D ₂ , (HO),PhC (CH ₃) ₂ -, (CH ₃ O) ₂ PhCH ₃ -, CH ₃ O (HO) PhCO-, CH ₃ OOCPhO-, etc.	4		3		1	8
	Also:	IC≡C-, CH ₂ =CH(CH ₃)- PhCl 1 Cl, mono- terpenones, C ₁₂ H ₇		1	3		3	7
		P.I.D. ions Other unclassified	2	3 3	1	1	2	8 4
152.0626	C ₁₂ H ₈	$\begin{array}{c} Ph_2 \neq Y \ [Y=X_2, \\ (OH)_2, \ O=C \neq, \\ R, \ -OR \end{bmatrix}, \\ PhCHRPh \end{array}$		3	4	5		12
	Also:	$CH_{s}O-C_{7}H_{5}O_{2}$ (see $C_{7}H_{6}O_{2}$), $O_{2}N$ (HO) PhCH ₂ -, CH_{2} =CHCON-(cyclo- hexyl)-, Cl-benzox-	0	9	1			5
		azolyi	4	4	-	_		
		P.I.D. ions	3	5	8	2		18
		In Mass Spectral Correlat	ions; I	McLaff	erty, F.	; 4		4

Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

ADVANCES IN CHEMISTRY SERIES

<u>m/e</u>	<u>Formula</u>	Structural Significance	<u>1</u>	$\frac{Pro}{2}$	elativ babil <u>3</u>	e ity 4	<u>5 ′</u>	Fotal
153.0471 153.0704	C ₉ H ₁₀ C1 C ₁₂ H ₉	See $C_7 H_6 Cl$ PhPh $\frac{1}{7} Y (Y = -NO_2, X, R);$	5		2	1	1	9
		$(naphthyI-C=C) + R_2 + H$ (rearr.)	1	2		2	2	7
	Also: E T C th	$BrC_2 H_4COO \ddagger R \ddagger H_2 (rearr.),$ CC_3 , $(CH_3O)_2 PhO \ddagger$, $CH_3OPhCOO \ddagger R \ddagger H_2,$ hiophene-COCH ₂ CO \ddagger	3		2			5
		P.I.D. ions Other unclassified	2 2	5 1	3	4	2 1	16 4
154.	HCONHF C C	PhCl-, Ph_2SiCl_2 , (rearr.), $F_3CON (C_2 H_5) CH_2$ -, $P_3 H_7OCl$ (see $C_7 H_5 OCl$) P.I.D. ions	2 3	1 6	1 6	2 4	3 1	9 20
155.	C ₈ H ₈ OC F ((F C M H C C	l (see C ₇ H ₇ O), BrPh \neq Y (see Ph \neq Y), C ₇ H ₄ O ₂ Cl (see C ₇ H ₅ O ₅ C ₂ H ₅ O) ₂ POO \neq C ₂ H ₃ \neq H ₂ , I $+$ R \neq O- (C ₄ H ₉ O-)POO $+$ R \neq H ₂ , I $+$ R \neq O- (C ₄ H ₉ O-)POO $+$ R \neq H ₂ , tc. (rearrs.), C ₃ H ₃ Br ^{ai} Cl, C ₅ F ₅ , C ₃ H ₂ BrF ₂ , PhPO(OCH ₃). aphthyl-CO-, CH ₃ PhSO ₂ -, I ₉ C ₄ OOCC ₂ H ₂ CO-, (pyridyl) ₂ -, CH ₃ -naphthyl-CH ₂ -, C ₁₁ H ₂₃ \neq CH ₂ NH ₂ P.I.D. ions	2), 2, -, 11	8 8	11 4	4 3		34 15
156.	C ₂ H ₁₇ N	(CH ₂) CH ₂ -, etc.,						

1	1	1	3		6
7	7	3	3	4	24
				2	2
	1 7	$\begin{array}{ccc}1&1\\7&7\end{array}$	$\begin{array}{cccc}1&1&1\\7&7&3\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

mle	Formula	Structural Significance		Re	elativ	7e		
<u></u>			1	$\frac{Pro}{2}$	$\frac{3}{3}$	$\frac{11}{4}$	5 7	[otal
			-	-	-	-		-
156.9244 156.9465	C ₃ H ₅ Br ⁸¹ C ₃ H ₄ BrF ₂	C1 2	4 1			1 1		5 2
	Also: H C ($H \neq ROOCCH_2 \neq C (COOC_4 H_9) =$ CHCO $\neq OR \neq H_2 (rearr.)?,$ $C_3H_7)_3Si \neq SiR_3, 1-Ph-(CH_3) =$						
	P	oyrazole + X	1	2				3
		P.I.D. ions	3	8	4	8		23
158.0969	$C_{11}H_{12}N$	$(CH_3)_2$ -indole- CH_2 -	1	1				2
190.1095	С ₁₂ П ₁₄	$(R = -C_2 H_4 OH, H)$	1	1			1	3
		P. I. D. ions Other unclassified	5	3 1	4	2	3	17 6
		other unclassified	2	1			J	U
158.9768	$C_7H_5Cl_2$	$Cl_2 PhCH_2 \neq$, $PhCCl_2 \neq X$; $Cl_2 PhC (CH_3)_3$	10			1		11
	Also: ($C_{12}H_{15}$, $C_{g}H_{g}Br$ -, CHFI-	2	1	1			4
				А	2	4		11
		Other unclassified	1	2	1	4		8
160.	C ₂ BrF ₃	, CH_3O -indole- $CH_2 \frac{1}{4}$,	1	1			1	9
	,	$\begin{array}{c} \mathbf{P}_{1} = \mathbf{P}_{1} \mathbf{P}_{1$	4	9	4	2	1	20
		Other unclassified				3		3
161.1329	$C_{12} H_{17}$	See $C_{10} H_{13}$ (<i>m/e</i> 133)	8	2	2			12
	Also:	$C_{11}H_{13}O, CH_{3}$ -benzothiophene-						
	($C_{3}T_{5}$, BrC ₆ H_{10} \ddagger , C ₃ H_{5} CON (Ph) \ddagger R \ddagger H (rearr.)	2	2		2		6

mla	Formula	Structural Significance	_	Rela	tive		
<u>m/e</u>	Tormula	birdetarar biginiteanee		roba	bility	Ľ,	(Taka 1
			1	<u>z</u>	3	4	Total
161. 1329	C ₁₂ H ₁₇ (C	ont'd.) P.I.D. ions Other unclassified	2	15 1	3	3	20 10
		other unclassified		1	5	v	10
161.9639	C ₆ H ₄ OCl ₂	$Cl_2PhO + Y + H$ (rearr.) (Y= R, -COR, CH_3SO_2 -)	9	3	1		13
	Also: Pl Pl	hN (C ₄ H ₉) -CH ₂ $\frac{1}{4}$, hN (COCH ₃) CHCH ₃ $\frac{1}{4}$	1		1	1	3
		P.I.D. ions Other unclassified	7	16	11 1	7 2	41 3
162 0820			7		A	1	19
162.9329	$C_{1}C_{1}^{2}F_{3}$ $C_{1}H_{1}O_{1}$	C., H., O., C. H.O.	1		4	1	12
			5		2	3	10
	Also: C_1 C_4	$H_{12}H_{19}$, CBr^{α} CI_2 , $(C_2H_5O)_3SI-$, H_4CIF_4 , C_3OCIF_4 , $C_{10}H_{13}ON$	4	3	4		11
		P.I.D. ions Other unclassified	1 3	4 1	4 3	4 1	13 8
164.	C ₆ H ₁₁ -C ₆	$H_{9} \neq HOH, C_{3} H_{5} (CH_{3}O) PhO + R_{-}$ H (rearr.), OHC (CH ₃ O) PhO + R_{-}	9		1	9	5
	T	P.I.D. ions Other unclassified	2 7 3	19	9 2	4 1	39 6
165.0704	C ₁₃ H ₉	Y-PhCHZPh-Y', ar -Ph-Z-CH ₃ - benzofurans, YPh-Ph(Y')-CH ₃ (Y=Y=X, -ORX, -OH; if Y= R, 167, 166, or 168 larger) (Z-P, Y)		Α	15	F	24
165.0915	C ₁₀ H,O,,	(w, A)		Ŧ	10	0	
	Ċ, H, Ŏ,	See <i>m/e</i> 151	4	3			7

<u>m/e</u>	Formula	<u>Structur</u>	al Significance	<u>1</u>	Re <u>Pro</u>	lativ babil <u>3</u>	re <u>ity</u> 4	<u>5</u>	Total
165.0915	$\begin{array}{c} C_{10}H_{13}O_2 & (C_{10}H_{13}O_2) \\ Also: CH_2E \\ ClPh \\ furan \\ C_2 Cl \end{array}$	Cont'd.) 3rCOOCH(CH=CHCO) CH=CHCO $-CH_2 + ,$	CH ₃ ↓ , ↓, Cl-benzo- (H ₅ C ₂ O) ₂ OPC ₂ H ₄	† , 2	2	5	3		12
	P. Ot	³ I.D. ions ther unclas	ssified	1	6	7	3 2		17 2
166.0782	C ₁₃ H ₁₀ (P	'h ₂ C)YY' R)	(Y= X, OH, Ph,	1		2	2	2	7
	Also: $C_2 Cl$ carb Ph (C ClPh	${}_{3}^{C1^{37}}$, (C azole $\frac{1}{7}$, (COO $\frac{1}{7}$ R $\frac{1}{7}$ N (C ${}_{3}$ H ${}_{5}$)	$_{3}H_{5}$ PhOCl) $\ddagger X_{2}$, $D_{2}N$ (HO) PhCO \ddagger $H)_{2}$ (rearr.), \ddagger COR	', 2	2	4	1	2	11
	P. Ot	I.D. ions ther unclas	sified	5 1	6	3	7 1	4 3	25 5
166.9034	C ₂ Cl ₃ F ₂			1	1	2	2		6
167.0860	$C_{13}H_{11}$ Pl	h₂CH∔R, acenaphthe	$\frac{PhPhCH_{2}}{HR},$	7	5				12
	Also: ClPh (rear Cl (F H + F	N (CH ₂ CH r.), C ₁₀ H HO) PhC ₃ H $\frac{1}{2}$ OOCP	H=CH ₂) + COR + 1 ₁₂ Cl, I ₄ + C ₃ H ₇ , 1COO + R + H ₂	H					
	(rear	r.), C₂HO	Cl ₃ Cl ³⁷	4	1	2	2		9
	P. Ot	I.D. ions ther unclas	ssified	2 2	3	1 5	2 3		8 10
168.	(Ph,0) ∔ Y	(Y= C1 ", (CO, COR+X, etc	.),					

$(Ph_0) \neq Y (Y=Cl_0, CO, COR+X, etc.)$					
(Ph, N) + Y'(Y = R, -COR),					
$C_{H_{a}}H_{a}OC1$ (see $C_{H_{a}}H_{a}OC1$),					
$O_{n}NPh \neq NO \neq O$ (rearr.), C. H.O.					
(see C, H, O,)	4	5	4	2	15
P.I.D. ions	8	6	6	7	27
Other unclassified			2		2

m/e	Formula	Structural Significance		Re	lativ	e		
			1	$\frac{Prop}{2}$	3	<u>11y</u> 4	5 To	otal
			-	-	-	-		
168.9653 169.0420	C ₇ H ₆ Br C ₉ H ₁₀ OCl	See C ₇ H ₇ See C ₇ H ₇ O	4 4	2		7	1	1 6
169.0653	С ₁₂ Н ₉ О	PhPhO ₄ ; PhOPh ₄ Y, HOPh ₂ - $\frac{1}{4}$ Y (Y=X, -OPh, etc.)	6	8	3	2	1	9
	Also: Pr Cl Cl H ₂ C ₃ (re	$\begin{array}{l} h_2 N \ddagger COR \ddagger H (rearr.),\\ PhSi (CH_3)_2 -, naphthyl-C_3 -,\\ _2C_2 H_3COOCH (CH_3) -,\\ _5C_3 OOCC_4 H_8CO -, Cl-terpenols,\\ F_7; ClCH_2CON (Ph) \ddagger R \ddagger H\\ earr.), etc. (see C_9 H_{10}ON), \end{array}$						
	Cı	$_{2}$ H $_{25}$, Br (HO) Ph \neq X ₃	5	4	6	5	2	20
		P.I.D. ions Other unclassified	3 1	6	5 2	2	1	l6 3
170.0731	C ₁₂ H ₁₀ O	PhPhO $\frac{1}{7}$ Y $\frac{1}{7}$ H (Y= R, -COR)	10	1	A			15
		$(H_{11}C_5)_2$ NCH ₂ $\frac{1}{2}$, BrPhNH-	10	1	Ŧ		-	
		$\frac{1}{2}$ COR, (pyridyl) ₂ N-, C ₃ H ₇ - (Cl) PhO+BO+H (rearr.)	4		1	1		6
		P.I.D. ions	5	9	5	9	2	28
		Other unclassified	1		I			2
170.9768	C ₈ H ₅ Cl ₂	$Cl_2PhC_2 \neq HX_2$						•
171.0809	С., Н., О	$Cl_2 Ph (C=C) \neq X$ Ph-Ph-O $\neq Y \neq H_2$ (Y= -R-OH)	1	1	1			3
	12-11-	-COCH ₃ , R) (rearr.)	1	2	1	1		5
	Also: RC (r Cl	O ╪ COC ₇ H ₁₄ COO ╪ R ╪ H earr.), FPhPh { H, C ₅ ClF ₄ , H ₃ OPhSO ₂ 	1	1	1	1		4
		P.I.D. ions Other unclassified	3 1	14 1	2 2	4 1	:	2 3 5
171.9524	$C_{6}H_{5}OBr$	BrPhO \neq Y \neq H (rearr.)	Б		1	1		7
171.9846	$C_8H_6Cl_2$	$(1 - R, -COCH_3)$ $Cl_2PhC_2H_3 \neq X_2$ P.I.D. ions	1 7	3	1 4	2 3	7 3	4 24
	Advances in Ch	In Other Sunglassified ions; McLafferty emistry; American Chemical Society: Was	, F.; shing	1 gton, D	3 C, 196	53.		4

<u>m/e</u>	<u>Formula</u>	Structural Significance	<u>1</u>	Re <u>Pro</u> 2	lativ babil <u>3</u>	e ity 4	<u>5</u>	Total
172.9924	C ₈ H ₇ Cl ₂	$\begin{array}{c} CH_3 & (Cl_2) PhCH_2-, \\ Cl_2 PhCH & (CH_3)-; \\ Cl_2 PhCH_2 CH_2 & \frac{1}{4} X \end{array}$	8		1	1		10
	Also: C C	l_2 PhCO-, $C_{13}H_{17}$, CHBrBr ^{ai} , $_2H_5$ COOCH $_2$ CH (OCOC $_2H_5$)-	5			2	1	8
		P.I.D. ions Other unclassified	1 1	3 3	2	5 3	1 1	10 10
174.	СН ₂ =СН- Н (1	CH ₂ N (COCH ₃) Ph \neq Cl, BrBr ^{an} C \neq COOC ₂ H ₄ \neq H rearr.)? P.I.D. ions Other unclassified	1 7 1	1 11 1	4 1	5 2	3 1	2 30 6
174.9717	C ₇ H ₅ OCl ₂	$Cl_2PhCHOH \ddagger, Cl_2(HO)PhCH_2 \ddagger$ $Cl_{HO}(CH_2)Ph \ddagger X$	-,					
185 1400	a	$ClPhOCH_2 + COOR, etc.$	6	2	4			12
175.1486	C ₁₃ H ₁₉	See C_{10} H_{13} (<i>m/e</i> 133), also perhydropyrene	6	1	3	2		12
	Also: C H C	${}_{4}^{4}Cl_{2}F_{3}$, PhSiCl ₂ -, ${}_{2}^{2}C=CClCH_{2}OCOC_{2}H_{4}CO-$, ${}_{12}H_{15}O$ P.I.D. ions Other unclassified	2	1 15	3 3	2		5 18 4
176. 1201	С ₁₂ Н ₁₆ О	Cyclohexyl-PhO ‡ R ‡ H (rearr.),etc. P.I.D. ions Other unclassified	5	2 10 1	2 10 1	4		4 29 3

m/e	Formula	Structural Significance	Relative Probability						
			<u>1</u>	2	<u>3</u>	<u>4</u>	5 <u>Total</u>		
177.127 9	C ₁₂ H ₁₇ O	$C_4 H_9$ (HO) PhCH (CH ₃) $\frac{1}{4}$, $C_4 H_9$ (CH ₃ O) PhCH ₂ $\frac{1}{4}$, etc. (see <i>m/e</i> 107)	6	1		4	11		
	Also: C ₂ C ₆	H ₂ Br ^{al} Cl ₂ , C ₂ H ₅ OCOPhCO-, H ₁₀ OBr, CF ₂ I	4	1	1	3	9		
		P.I.D. ions Other unclassified	2	3 2	6 2	4 1	13 7		
178.0782	C ₁₄ H ₁₀	Dihydroethanoanthracene,	0	1	0	0	7		
	Also: C _s Pl	etc.; $Pn_2C_2 \neq X_4$; 179 larger Cl_3Cl^{37} , HOPhN ($C_4 H_9$) $CH_2 \neq$, hCH (CH_3)N($C_2 H_4$ OH) $CH_2 \neq$	2	I	2	2	4		
		P.I.D. ions Other unclassified	4	10 1	7	1 2	22 3		
178.9034 179.0860	$\begin{array}{c} \mathrm{C_3Cl_3F_2}\\ \mathrm{C_{14}H_{11}}\end{array}$	$Ph_2C_2H \neq Y$ (Y=X, H; HX ₂), (CH) PhOPO (OPPCH) OR	5		2	1	8		
		(rearr.), etc.	1	3	3	1	8		
	$\begin{array}{c} \text{Also.} & \text{C}_2 \\ \text{C}_2 \\ \text{C}_1 \end{array}$	$\begin{array}{c} \text{HBr}_{4}^{\text{a}}, \text{ Ch}_{3}^{\text{b}}\text{OCC}_{3}\text{h}_{5}^{\text{b}}\text{B}^{\text{a}}_{7}^{\text{a}}, \\ \text{HBr}^{\text{a}}\text{ ClF}_{2}, \text{ C}_{3}\text{HCl}_{3}\text{Cl}^{37}, \\ _{1}\text{H}_{15}\text{O}_{2}, \text{ Cl}_{3}\text{Ph} + X \end{array}$	3		3	3	9		
		P.I.D. ions Other unclassified	2 1	7	3	3 1	15 2		
180.0660 180.0938	C ₉ H ₁₀ NO ₃ C ₁₄ H ₁₂	$O_2 N$ (HO) PhC (CH ₃) ₂ - (CH ₃ PhCH ₂ -) ₂ , (H ₅ C ₂ Ph-) ₂ ,	2				2		
		$(CH_3Ph-)_2CHR, (PhCH)_2 \neq X_2$ P.I.D. ions Other unclassified	6	5	2 5	1 1	35 219 12		

<u>m/e</u>	Formula	Structural Significance		Re Pro				
			<u>1</u>	2	3	4	5 Total	Ļ
180 . 9 888	C4F7		1	3	2	1	7	
	Also: PhP Cl (PhP	PhCH (CH _s) $\frac{1}{4}$, (C _s H ₇) PhCH (CH _s) $\frac{1}{4}$, PhNO $\frac{1}{4}$ O	2	1	1		4	
	I C	P.I.D. ions Other unclassified	1 1	8	2	3 3	14 4	
18 2.	Ph ₂ NCH ₂ PhC	$(0, N)_{2}$ PhNH $\frac{1}{7}$ COR, H, PhNH $\frac{1}{7}$	0	2	1	1	2 5	

PhCH_PhNH +	2		1	2	5
P.I.D. ions	2 11	1	4	4	22
Other unclassified	1	1			2

182.9446	$C_{7}H_{4}BrO BrPhCO \frac{1}{4}$	4	1 4	1	1	7 10
182.9810	$C_{13}H_{11}O$ PhOPhCH ₂ \ddagger , CH ₃ OPhPh \ddagger X, PhCH ₂ PhO \ddagger , PhPhOCH ₂ \ddagger , etc.		7	1	4	10
			3	2	3	13
	Also: Ph_2SiH- , CF_3SSCF_2-			1	1	2
	P.I.D. ions Other unclassified	1 1	4	1	6 1	11 3

PhCH ₂ PhO \ddagger R \ddagger H (rearr.), C ₁₂ H ₂₆ N (see m/e 170), (O ₂ N)-PhO+R+H					
(rearr.). H.NPhBr + X.					
$O \neq ONPhCOCH_{+} \Rightarrow Br$	3	2		2	7
P.I.D. ions	4	10	10	6	30
Other unclassified			1		1
	PhCH ₂ PhO \ddagger R \ddagger H (rearr.), C ₁₂ H ₂₆ N (see m/e 170), (O ₂ N) ₂ PhO \ddagger R \ddagger H (rearr.), H ₂ NPhBr \ddagger X, O \ddagger ONPhCOCH ₂ \ddagger Br P.I.D. ions Other unclassified	PhCH ₂ PhO \ddagger R \ddagger H (rearr.), C ₁₂ H ₂₆ N (see m/e 170), (O ₂ N) ₂ PhO \ddagger R \ddagger H (rearr.), H ₂ NPhBr \ddagger X, O \ddagger ONPhCOCH ₂ \ddagger Br 3 P.I.D. ions 4 Other unclassified	PhCH ₂ PhO \ddagger R \ddagger H (rearr.), C ₁₂ H ₂₆ N (see m/e 170), (O ₂ N), PhO \ddagger R \ddagger H (rearr.), H ₂ NPhBr \ddagger X, O \ddagger ONPhCOCH ₂ \ddagger Br 3 2 P.I.D. ions 4 10 Other unclassified	PhCH ₂ PhO $\frac{1}{7}$ R $\frac{1}{7}$ H (rearr.), C ₁₂ H ₂₆ N (see m/e 170), (O ₂ N) ₂ PhO $\frac{1}{7}$ R $\frac{1}{7}$ H (rearr.), H ₂ NPhBr $\frac{1}{7}$ X, O $\frac{1}{7}$ ONPhCOCH ₂ $\frac{1}{7}$ Br 3 2 P.I.D. ions 4 10 10 Other unclassified 1	$\begin{array}{cccc} {\rm PhCH}_2{\rm PhO} \begin{array}{l}{\stackrel{1}{7}} & {\rm R} \begin{array}{l}{\stackrel{1}{7}} & {\rm H} & ({\rm rearr.}), {\rm C}_{12} {\rm H}_{26} {\rm N} \\ & ({\rm see} \ m/e \ 170), ({\rm O}_2 {\rm N})_2 {\rm PhO} \begin{array}{l}{\stackrel{1}{7}} & {\rm R} \begin{array}{l}{\stackrel{1}{7}} & {\rm H} \\ & ({\rm rearr.}), {\rm H}_2 {\rm NPhBr} \begin{array}{l}{\stackrel{1}{7}} & {\rm X}, \\ & {\rm O} \begin{array}{l}{\stackrel{1}{7}} & {\rm ONPhCOCH}_2 \begin{array}{l}{\stackrel{1}{7}} & {\rm Br} \\ & {\rm P.I.D. \ ions} \end{array} \end{array} \begin{array}{c} 3 & 2 & 2 \\ & {\rm P.I.D. \ ions} \end{array} \end{array}$

mlo	Formula	Formula Structural Significance		Re					
<u>m/e</u>	<u>10111111</u>		<u>1</u>	<u>Pro</u>		<u>4</u>	5	<u>Total</u>	
185.	C₄ H ₉ O	OCC ₄ H ₈ CO + OR, C ₂ Cl ₃ Cl ³⁷ F, X + ClPhOCH ₂ COO + R + H,(rearr C ₃ ClF ₆ , C ₂ HBrBr ^{at} , Br (HO) (CH ₃) Ph + X P.I.D. ions Other unclassified	.) 2 1	2 7 3	3 3	1 1	1 2 1	8 14 5	
186.	PhOPh	$\begin{array}{l} \mathbf{O} \neq \mathbf{R} \neq \mathbf{H} (\text{rearr.}), \\ \mathbf{C}_4 \mathbf{H}_9 \mathbf{OOCC}_4 \mathbf{H}_8 \mathbf{CO} \neq \mathbf{OR} \neq \mathbf{H} \\ (\text{rearr.}), \\ \mathbf{C}_2 \mathbf{H}_2 \mathbf{BrBr}^{\text{at}} \neq \mathbf{Br}_2, \\ \mathbf{ClPhPh} \neq \mathbf{Cl}_2 \\ \mathbf{P.I.D.} \text{ions} \end{array}$	1 8	1	2 8	1	5	4 22	
187.	C 14 H 19	(see $C_{10}H_{11}$), Cl_2PhC (CH_3) ₂ -, $C_2H_3BrBr^{20}$ P.I.D. ions Other unclassified	4 1 3	1 3	1 2	1 4	23	8 11 6	
188.	In 10 ł	nighest peaks, only ion classified was (n-C ₄ H ₉ O) ₂ BOCH ₂ + R + H (rearr.) (10th highest in spectrum) P.I.D. ions Other unclassified	2	2	6	5 1	6	21 1	
189.1642	C ₁₄ H ₂₁	See C ₁₀ H ₁₃ (<i>m/e</i> 133)	7	1		1		9	
	Also:	$C_8 H_7 OCl_2$ (see $C_7 H_5 OCl_2$), $C_{13} H_{17}O$, $CH_2 = CHCH_2 OCOPhCO-$	1	2	2			5	
		P.I.D. ions Other unclassified	1	6	4 2	1		11 3	
,	Te	Structural	Re	lati	ve 1	Prob	abil	ity	
------------------------	---	---	--------	-------------	--------	---------------	-------------	--------	---------------
<u>m/e</u>	Formula	Significance	1	2	3	4	5	6	7 Total
190.	Cl (O ₂ N) flu	Ph + Cl, 2-cyano- norene + H P.I.D. ions Other unclassified	2 2	1 7	5	7 1			3 21 1
191. 0860 191. 1435	$C_{15} H_{11}, C_{14} H_{23}$: $C_{13} H_{19} O$	Anthracene-CH ₂ \ddagger , phenanthrene-CH ₂ \ddagger ; tetradecahydroan- thracene \ddagger etc. See m/e 177	6 3	3 3	3	1			9 10
	Also: C ₄ C C C C C C	$Cl_{3}F_{2}$, $C_{3}H_{6}ClOSiCl_{2}$ -, $_{3}BrF_{4}$, $CBrBr^{ai}$ F, $_{4}HCl_{3}Cl^{37}$, $C_{3}H_{4}Br^{ai}$ Cl_{2} , $ClF_{4}S$, Br^{ai} $ClPh + X$, $H_{2}F_{2}I$, $C_{3}H_{7}OCOPhCO +$	8	2	1	6			17
		P.I.D. ions	2	2	3	1			8
192.	CH 30PhN Cl	$(C_4 H_9) CH_2 \frac{1}{4}$, $L_2PhCC1 \neq CL_2$ P.I.D. ions Other unclassified	1 5	2 1	1 7	4 1	2		2 20 2
193.	C ₁₅ H ₁₃ (s (s (c) (s C ₂	see m/e 179), (Cl ₃ PhC ₁ -) ee m/e 159), C ₂ H ₅ O) ₃ SiOCH ₂ +, C ₁₂ H ₁₇ O ₂ ee m/e 151), SbCl ₂ , t ₅ OCOC ₃ H ₅ Br + P.I.D. ions Other unclassified	7	3 6 1	2 3	2	1 1 2	3 1	13 15 4

194.

$C_4 Cl_2 F_4$, $C_2 H_5 OCOPhCOO \ddagger R \ddagger H$ (rearr.), $Cl_3 Ph$ (OH) $\ddagger HCl 2$

1. 1

5

1

71

mla	Formula	Structural	R	elat	tive.	Pro	babi	lity		
mre	Formula	Significance	1	2	3_	4	5	6	7	Total
194.	C4Cl3F4	(Cont'd.) P.I.D. ions Other unclassified	1	3	4 1	5	4	3 1	3 1	23 3
195.	C 15 H 15 (s C1 et O C	ee $C_{13} H_{11}$), $Cl_3 PhO-$, $_4H_{11}O$ [PhCOPh (CH_3)-, c.], (CH_3)PhOPO ($OPhCH_3$)- R, $C_{12}H_{16}Cl$ (see $C_7 H_6Cl$), $F_3 PhCF_2 -$, PhBrC ₃ H ₃ - P.I.D. tons Other unclassified	7 1 4	4 5 1	2 3 1	2 1	3	1 1	2 1	21 11 7
195.9249	C ₆ H ₃ OCl ₃	See $C_6H_4OCl_2$ (<i>m/e</i> 162)	17	6	1	1				25
	Also: Pl (se	hCH_2N (Ph) CH_2 -, C_9H_9Br ee C_9H_{10} , (O_2N) ₂ Ph HCH ₂ -			1	1	3			5
		P.I.D. ions Other unclassified	7	3 1	3	6 1	1 2			20 4
197.	C ₉ H ₁₀ Br(Hu P) C ₄ B: (C	(see C_9H_{11}), $C_2Br^{a1}ClF_3$, OPhCOPh-, HO $(O_2N)_2$ - hCH ₂ -, $C_{14}H_{13}O$ (see $C_{13}H_{11}O$ ClF ₈ , H_9C_4 (Cl) PhOCH ₂ -, rCOC ₂ H ₃ Br ^{a1} -, Ph ₂ Si- CH ₃)-, $C_{15}H_{17}$ P.I.D. ions Other unclassified) , 8	71	5	3 1 2	4 1			22 8 2
198.	(H ₁₃ C ₆)2 ¹ (C	NCH ₂ -, HO (O ₂ N) ₂ PhCH ₂ -, H ₃) ₂ NCONHPhCl + X P.I.D. ions Other unclassified	1 2 1	1 26	1 12	9				3 49 1

<u>m/e</u>	Formula	Structural Significance	<u>R</u> 1	<u>elat</u>	<u>ive</u>	Prol 4	<u>babi</u> 5	<u>6</u>	7 1	[otal
199.	C ₃ H ₃ BrBr ⁸¹ , Cl ₂ -ber C ₃ HCl ₃ P.I. Othe	Br (HO PhCO $\frac{1}{7}$ R, nzofuran-CH ₂ $\frac{1}{7}$ R, F ₃ D. ions r unclassified	2	2 4 2	5	3	1 3	5		5 20 2
200.	ClPhC (Ph) + H(RCOO P.I. Othe	C1 (?) C3H4Br2 + H D. ions or unclassified	1 4 1	3	13	1 9 2	6 2			2 35 5
201.	C ₃ H ₅ BrBr ⁸¹ , ClPhCH C ₂ Cl ₄ C (C ₄ H ₉), P.I. Othe	$C_2 HOBrBr^{81}$, $H_2 Ph + X, C_3 Cl_2 F_5$, l^{37} , $_2(CH_3)_2 Si_2 H-, C_{16} H_9$ D. ions er unclassified	4 1 1	1	2 3 1	1 3 1	1 3	2 2	2 1	10 15 4
202.	Hg, Hg ┿ (CF ₃ Cl ₂ (CF P. I.	(ClPhOPh) \neq Cl ₂ , H ₃ O) Ph-CHCH ₂ \neq C ₄ H ₈ D. ions	2 5	1 4	1 3	1 4	4	1		5 21
203.0030 203.0263	C ₉ H ₉ OCl ₂ See C ₁₂ H ₈ OCl ClP	$C_7H_6OCl_2$ hOPh $\frac{1}{7}X$,	1			1			1	3
203.1799	CI C1 C15 H2 3 See	PhPn (OH) $+ X$, (PhPh) O $+ COR$ C ₁₀ H ₁₅ , (<i>m/e</i> 133) C D TR	2	3	1 1	1	2	1	1	5 7
	B	(?)						2	2	4
	P.I. Othe	D. ions er unclassified	1	2	5	2	3	2 2	2	16 3

73

m le	Formula	Structural	R	elati	ive	Pro	babi	lity	_	
		Significance	<u>1</u>	<u>2</u>	3	4	<u>5</u>	<u>6</u>	<u>7</u>	Total
204.	Phenan	threne = $(CH_2)_2 \neq (CH_2CH_2)$, $C_4H_5Br^{81}Cl_2$ P.I.D. ions Other unclassified	5	1 6	1 5	4 1	2	4 1	1 1	2 27 3
205.	C ₁₄ H ₂₁	O (see m/e 177), sesquiter- penones, $C_7 H_5 Br^{s1} Cl$, $C_4 H_9 OCOPhCO_{\ddagger}$, $C_6 F_7$, $C_2 H_5 OC_6 H_9 Br_{\ddagger} X$, $BrPhCF_2 = \frac{1}{2}$ Br-naphthyl $\frac{1}{2} X$, P.I.D. ions Other unclassified	, 7 1	1 1 1	1 3	3	3	3 3	1 3	13 14 4
206.	C₄H ₉ (C	$C_{3}H_{5}O)PhO \neq R \neq H (rearr.),$ $C_{2}PhCl_{3} \neq Cl_{2}$ P.I.D. ions Other unclassified	7	1 9	1 6 1	2 2	3 1			4 27 2
207.	C ₁₃ H ₁₉ '	O_2 , $C_{12}H_{15}O_3$ (see m/e 151), $Cl_3PhC_2 + (see m/e$ 173), methylsiloxanes, $CBrBr^{81}Cl$, $C_{16}H_{15}$ P.I.D. ions Other unclassified	8 1 1	4 4 1	1	1 3 1	2 6			16 14 3
207.9766	Pb	R ₄ Pb		3	7					10
	Also:	OCNPhCH₂Ph { , PhPhOC ₃ H ₃ ∔ C ₃ HPh		1	1					2
		P.I.D. ions Other unclassified	7	9 2	8 1	4				28 3

,	- 1	Structural	R	elat	ive	Pro	babi	lity		
<u>m/e</u>	Formula	Significance	1	2	3	4	5	<u>6</u>	73	<u>Fotal</u>
209.	C ₁₃ H ₁₈ Cl C C <i>m</i> C B R R	(see $C_{\tau}H_{6}Cl$), $C_{12}H_{14}Cl0$, $_{4}Cl_{3}Cl^{37}F$, $C_{15}H_{13}O$, H_{3} (PhCOPh) CH_{2} + (see /e 195), $C_{\tau}H_{4}Cl_{3}O$ (see $_{\tau}H_{\tau}O$), $C_{3}Br^{s1}ClF_{3}$, $i \neq R_{3}$, $H_{\tau}C_{3}OOCPhCOO$ + . $\frac{1}{7}H$ (rearr.) P.I.D. ions Other unclassified	- 7	4 5	3 4	1 2	1 3 1	3 1		18 14 3
210.	O ₂ NPhCH	I=CCICO { P.I.D. ions Other unclassified	6	8	1 4 1	6	5	2		31 1
211. 1122	C ₁₅ H ₁₅ O Also: H C † C H	HOPhPhC $(CH_s)_2 +$, PhOPhC $(CH_s)_2 +$, etc. $O(O_2 N)_2$ PhCH $(CH_3)_2 +$, etc. $O(O_2 N)_2$ PhCH $(CH_3)_4 +$, $_3$ HBrF ₅ , $(H_9C_4 O)_2 OPO-$ $R_1 + H_2$ (rearr.), $_2$ HBr ^{ai} Cl ₃ , C_4 HCl ₃ F ₃ , hPhSi $(CH_3)_2 +$, $_{11}C_5$ -naphthyl-CH ₂ + P.I.D. ions	7 8 1	1	6 5	4	1	4	1	8 15 22
212.	H ₅ C ₃ (Br) P	PhO‡COR‡H (rearr.), hOPhC ₃ H ₆ ‡R‡H (rearr.) P.I.D. ions Other unclassified	2 2 1	1 4	71	8	1 6	3		4 30 2

<u>m/e</u>	<u>Formul</u>	Structural Significance	<u>1</u>	<u>R</u> 2	<u>ela</u>	<u>4</u>	<u>e P</u> 5	rot 6	<u>abi</u>	<u>ility</u> <u>8</u> 9	<u>10</u>	Total
213.	C₄ Cl₂ F	$\begin{array}{c} F_{5}, HO (Br) PhC (CH_{3})_{2} \neq \\ C_{3}Cl_{4}Cl^{37}, C_{2}Br^{81}Cl_{2}F_{2}\\ C_{4}H_{5}BrBr^{81}, (CF_{3})_{2}Ph = \\ Ph_{2}Cl (C=C) \neq X, \\ H_{4} & B + \\ H_{4} & B + \\ HO \\ H_{13}C_{6}OOCC_{4}H_{8}CO \neq , \end{array}$	· ,									
		etc. P.I.D. ions Other unclassified	6	2 5	2 1	1 6 1	2	33	4 1			20 16 1
214.		P.I.D. ions	3	10	5	3	2	3	4			30
215. 1799	C ₁₆ H ₂₃	H A B H (?)										
		(Y= OH, -OCOR), corresp. olefin	1	2	3	1		3	2			12
	Also:	C ₄ H ₇ BrBr ⁸¹ , (H ₅ C ₂) ₂ Cl ₂ PhCH ₂ \ddagger , Cl ₃ Cl ⁸¹ Ph \ddagger , CH ₃ - benzanthracene	2				1		1			4
		P.I.D. ions		2	2	2	2		1			9
216.		P.I.D. ions Other unclassified	7	3		2	8 1	1	2			23 1
217.1955	C ₁₆ H ₂₅	$ \begin{array}{c} C \\ A \\ B \\ H \end{array} $ (?)										
			2	2	1		1					6

<u>m/e</u>	<u>Formula</u>	Structural Significance	<u>1</u>	$\frac{Re}{2}$	elat 3	ive 4	P 1 5	<u>ob</u>	abi 7	lity 8	9	10	Total
217. 1955	C ₁₆ H ₂₅ Also:	(Cont'd.) Other $C_{16}H_{25}$ (see $C_{10}H_{13}$), $CH_{3} O (CI_{2}) PhC (CH_{3})_{2} +$, $CI (CH_{3}O) PhPh + CI,$ $CH HG_{2} (PhO) P +$.											
		$C_{3}Cl_{3}F_{4}$	4	1	1				1				7
		P.I.D. ions			2	1	2	2	1				8
218.	HOPhI	∔I₂, (H₉C₄)₂ NCHPh P.I.D. Ions	5	1 3	1 7	3	4	1	2				2 25
219.	C₂ BrB	r ⁸¹ Cl, C₄ F ₉ , Cl∔Cl ₂ PhOCH ₂ COO∔R∔H (rearr.), BrPhSO ₂ -; C ₈ H ₇ Br ⁸¹ Cl(see C ₈ H ₉) P.I.D. ions		1	2 1	1 3	1	1 2	2 1	2	2	1	9 11
220.	ClPhO	PhO $\frac{1}{4}$ R $\frac{1}{4}$ H (rearr.), (CH ₃) ₂ NCOPh(C ₄ H ₉) $\frac{1}{4}$ Cl; H ₉ C ₄ (C ₆ H ₁₁)-cyclohexyl- $\frac{1}{4}$ HOH P.I.D. ions Other unclassified	1 3	1 3 1	4	1	3 1	2	1 5	2	1	1	3 24 3
221.	С ₆ Н ₁₇ ($D_{3}Si_{3}, Ph_{2}-C_{5}H_{7}+R,$ $Cl_{2}Ph_{2}+, (H_{3}COOC)_{2}Ph-$ $CO_{+}, C_{4}CIF_{6}, Cl_{2}(CH_{3}O)$ $PhO_{+}, Cl_{3}(H_{5}C_{2})PhCH_{2}+$ $PhCOCH=C (Ph) CH_{2}+,$ $OC_{+}NPhCH (-NCO)+(?),$ $Cl_{3}-2, 3-dihydrobenzo-$ $furyl_{+}; Cl_{2}PhOCH_{2}COO-$ $\frac{1}{7}R_{+}H, C_{2}H_{2}BrBr^{at}Cl$ $P.I.D. ions$ $Other unclassified$	2 ² , 3	3 1 2	4 1 1	3 5 1	1 5		11	111	1 2 1	1 1 1	18 18 6

<u>m/e</u>	Formula	Structural Significance	<u>1</u>	<u>Re</u>	$\frac{1}{3}$	ive 4	<u>P</u> 1 5	<u>ob</u>	abi 7	lity <u>8</u>	<u>9</u>	<u>10</u>	Total
222.	C ₄ BrF ₅	; C ₅ Cl ₃ F ₃ P.I.D. ions Other unclassified	4	2	1 7	3	3	2	1 6	5	4 2	1	2 37 2
223.0001	CH ₃ Pb Also:	$CH_{3}Pb \stackrel{\ddagger}{=} RR'R''$ $C_{3}H_{7}Ph_{2}CH(CH_{3})\stackrel{\downarrow}{+},$ $Cl(H_{7}C_{3})_{2}PhCH(CH_{3})\stackrel{\downarrow}{+},$ $etc., H_{9}C_{4}(O_{2}N)_{2}Ph\stackrel{\downarrow}{+},$ $H_{9}C_{4}OOCPhCOO\stackrel{\downarrow}{+}R\stackrel{\downarrow}{=}H_{2}$ $(rearr.), C_{4}CIF_{4}S_{2},$ $H\stackrel{\downarrow}{+}R\stackrel{\downarrow}{+}Ph_{2}(C_{3}H_{7})CH(CH_{3}).$ $(rearr.), Cl_{3}PhOCH_{-}$ $(CH)\stackrel{\downarrow}{+}COOP$	3	5	1								9
		H ₂₁ C ₁₀ −cyclohexyl P.I.D. ions Other unclassified	3	2	4 2	1 4	1 1 1	1 1		1	2 1	5	11 17 2
224.	H ↓ H _s	$C_{15}(H_{11}C_5)CH rac{1}{4}R,$ H_9C_4 OPhPh $rac{1}{4}HCl,(C_6F_8)$ P.I.D. ions Other unclassified	3	6		4	6	2	1 1	3	1	1 1	2 26 2
225.	С1 (Н ₉ С	C ₄) (HO)PhC(CH ₃) ₂ $\frac{1}{7}$, etc. C ₄ Cl ³⁷ , C ₃ Br st Cl ₂ F ₂ , H ₁₁ C ₅ - naphthyl-CH (CH ₃) $\frac{1}{7}$, HO (O ₂ N) ₂ PhC (CH ₃) $\frac{1}{2}$, Br (H ₇ C ₃) PhCH (CH ₃) $\frac{1}{7}$, PhOOCPhCO $\frac{1}{7}$ OR, PhOPhC ₄ H ₈ $\frac{1}{7}$; C ₅ Cl ₂ F ₅ , H ₃₁ C ₁₅ (H ₁₁ C ₅) CH $\frac{1}{7}$ R P.I.D. ions Other unclassified	6	1 2	2	1 1 1	1	2		21	1 1	2 4 1	13 12 6

<u>m/e</u>	Formula	Structural Significance	<u>1</u>	2 2	tela 3	tiv 4	<u>e</u> F <u>5</u>	<u>6</u>	$\frac{bab}{7}$	ilit <u>8</u>	<u>9</u>	<u>10</u>	Total
226.	(H ₁₅ C ₇) ₂ N C ₁ Ph	$CH_2 + , etc.,$ $_3H_{10} + (H) R,$ $PhOC_3H_4 (OH) + HOH;$ P.I.D. ions Other unclassified	1 3	3 6	3 2 1	2 2	1 4	3 4	1 2	3	1 1	2	14 29 2
227.	C ₁₈ H ₁₁ ‡ R	, H ₉ C₄(HO)PhBr ↓ X P.I.D. ions Other unclassified		9 1	1 3	1	1 2 1	1 1	2	2 4	2	1 2	6 26 2
228.	$C_{18}H_{12} \neq C_5$	(H) R etc.; H ₈ BrBr ⁸¹ ↓ HBr P.I.D. ions	4	3	3	2 2	1 4	1 1	2	1	1	1	4 22
229.	Cl ₃ Cl ³⁷ (C ₅ C ₃ B1 (C Cl (r C ₄ F ₃ 1	H ₃ C) Ph $\frac{1}{4}$ X, etc., H ₉ BrBr ⁸¹ $\frac{1}{4}$ X, HBr ⁸¹ ClF ₄ , HC=CBr ⁸¹ C (OH)- H ₃) $\frac{1}{4}$ R, C ₁₁ H ₁₃ Si ₃ , PhO $\frac{1}{4}$ C ₂ HCl $\frac{1}{4}$ Cl ³⁷ Earr.), C ₄ HCl ₃ Cl ³⁷ F ₂ ; Cl ₃ F ₄ , PhPhPh $\frac{1}{4}$ R; CCClFC (CF ₃) (OCH ₃) OR P.I.D. ions Other unclassified	, - 9	1	3	2 1	2 2	2 1 1	11	1	1	222	20 11 1
230.	H ₁₃ C ₆ CO	N (Ph) C ₃ H ₄ ‡X P.I.D. ions Other unclassified	1 2 1	4			2	2	1	1	3	1	1 16 1

	T amuu 1a	Structural		R	ela	tiv	e P	roł	oab	ilit	y		
<u>m/e</u>	Formula	Significance	<u>1</u>	2	3	4	5	<u>6</u>	7	8	<u>9</u>	<u>10</u>	Total
001													
231.	(H ₉ C ₄) ₂ Ph ClF H ₂₁ per	C (CH ₃) ₂ $+$, etc., I ₄ C ₂ OPh (Cl)C(CH ₃) ₂ . C ₁₀ CHPh $\frac{1}{2}$, hydrobenzanthracene	∔ , †₽,	,									
		$H_4 C_3 OOCC_2 H_4 - OC_3 H_4 + X, H_5 C_2 Hg_{1/2}$ $OC_3 H_4 + X, H_5 C_2 Hg_{1/2}$ $F_9 ; CH_2 ICHPh_{1/2} OH,$	·R,										
	Cl _s	Cl ³⁷ (HO) Ph +X P.I.D. ions Other unclassified	2	1 1	3 4	2 2	3	4 2 1	1 1	2	1	1	17 13 3
			-					•			-		U
232.	:	P.I.D. ions	6	1	1	2	1	2	2	1		3	19
233.	C ₁₆ H ₂₅ O [(+ H ₂ fur:	$C_{16}H_{23}$ (see m/e 215) $_{2}O$], Cl_{3} -benzo- $an-CH_{2} + ,$ $H_{C1}O$, $POC_{10} + + C1$											
	Bri C ₇ ($\frac{14}{2} + \frac{10}{2} $	h	1 2		2 1	2	1 3	1	2	1 1	4	7 14
		Other unclassified			1								1
234.	BrBr ⁸¹ Ph	$\frac{1}{2}$ Br ₂	1	٨	٨	1	٨	1	4				1 21
		Other unclassified	1	7	7	1	1	1	7				2
235.	$(ClPh)_2 CH C_3 C_5 C_5$	$\frac{1}{2} Y (Y = X, R),$ $Cl_{s}Cl^{37}F_{3}, Br_{2}Ph \frac{1}{2}Y^{3}$ $H_{6}ClOSiCl_{2} -$	*,										
	(C ₆ (C ₂	$H_1 \uparrow$; $H_{11} CH_2 CH_2 \rangle_2 CH \not\downarrow R;$ $H_5 \rangle_2 Cl_3 Ph \not\downarrow Cl$	5	1	23	2	1	1	3	4		1	20 12
	(Other unclassified		4	J	T	J	1	1	T		•	1

m/e	Formula	Structural		Re	lat	ive	Pr	oba	abil	lity	<u> </u>	10	Total
		Significance	<u>1</u>	<u>2</u>	3	4	<u>5</u>	<u>o</u>	1	<u>8</u>	<u> </u>	10	Total
236.	HO(O ₂ N)Pl Ph(CH C1; (re C ₁₂ Br (C ₇	$l(C_7H_{14})$ $PhCl_2$ $2=CHSPh(Cl_3)$ $l(C_3H_5)PhO$ COR H_2S H_2S (H_3C) (HO) Ph H_2S (H_3C) (HO) Ph H_2S F_8 P.I.D. ions Other unclassified	3 8	1 3	1 1	6	2 1	11	2 1	2	3 1	1	7 26 5
237.	H₅C₂Pb phe Cl Ph Ph	R ₃ , H ₁₇ C ₈ -thio- ene - C(CH ₃) ₂ $\frac{1}{2}$, (H ₇ C ₃) ₂ (CH ₃)- CH (CH ₃) $\frac{1}{2}$, etc., OPhCl ₂ $\frac{1}{2}$ Cl P.I.D. ions Other unclassified	3 1	2 2	1	23	1 1 1	2 3	3 2	2	1 2 1	1 4 4	15 21 6
238.	(CH ₃) ₂ Pb :	R ₂ P.I.D. ions Other unclassified	7	5	5	4	1	5	1	1	3	2 4 1	2 35 2
239.	Br ⁸¹ Cl _s P naj Ph C ₁₁ lar C ₄ Ph C ₁	hCH ₂ \ddagger , H ₁₁ C ₅ - phthyl-C ₃ H ₆ \ddagger , SiH ₂ PhSi (CH ₃) ₂ \ddagger , ,H ₁₁ (<i>m/e</i> 241 ger), H ₃₅ C ₁₇ \ddagger COOR, H ₅ Br ⁸¹ Cl ₃ \ddagger ; OPhC ₅ H ₁₀ \ddagger , ,H ₃₁ CO \ddagger P.I.D. ions Other unclassified	1	2 2 1	5 1	2 2		1	1	1	12	1 2	13 11 2
240.	C ₅ Cl ₃ Cl ³ ' 23 Cl +	F_2 , $C_{19}H_{12}$ (m/e \exists larger); $_3$ PhOCH ₂ CH ₂ O- R + H (rearr.) P.I.D. ions	1	5	2	2 5	1 7	1 1	1	3	2 1		7 26

ADVANCES IN CHEMISTRY SERIES

<u>m/e</u>	Formula	Structural Significance	<u>1</u>	$\frac{\mathbf{Re}}{2}$	$\frac{2}{3}$	ive 4	<u>P</u> 1 5	<u>6</u>	<u>abi</u> 7	lity <u>3</u>	9	<u>10</u>	Total
241.	BrBr ^{al} -cy C ₅ Cld (Cl (be etc H ₉ C ₅ CH (C ₅	yclohexyl $\frac{1}{4}$, C ₄ BrF ₆ , Cl ₃ F ₄ , C ₂ H ₄ OC ₂ H ₄ OPhC- H ₃) ₂ $\frac{1}{4}$, C ₁₉ H ₁₃ enzophenanthrene-CH ₂ $\frac{1}{4}$ C ₄ OOCC ₈ H ₁₆ CO $\frac{1}{4}$, HCl ₃ Cl ³⁷ F ₂ , IBr=CBrC (OH)- ₂ H ₅) $\frac{1}{4}$ P.I.D. ions	, , 4	4 3	1 1	2	1	1 2	2 2		2	3	16 12
242.	Ph=(C ₂ Cl C ₅	₃ Cl³)∔Cl ₂ , etc., HCl ₃ F ₄ ; P.I.D. ions	4	1	3	2 2	3	2 2	1 3	6	4	1	6 28
243.	Cl ₂ (H ₅ C ₂ HC Ph C ₆), PhCH ₂ $\frac{1}{2}$, etc., Cl ₂ CPhCCICl ³⁷ $\frac{1}{2}$, etc. a_{3}^{C} $\frac{1}{2}$, Cl ₃ PhSO ₂ $\frac{1}{2}$; F P.I.D. ions Other unclassified	, 4	1 3	1 2 1	1	1 2	1	1	2	2	1	12 7 4
244.	Ph₂NPh ‡	H (245 base) P.I.D. ions Other unclassified	3	1 3	2	4	3 1	2	1	1		1	1 19 2
245.	Tetrahydı pe † †	Conaphthacene- CH_2 ; , rhydronaphthacene- R, (CF_3CH_2O) ₂ PO- OR; H_5C_3O (H_9C_4) ₂ Ph Cl P.I.D. ions Other unclassified	- 1	2 1	4	1 2 1	4	1	1	2	1		4 16 1

<u>m/e</u>	Formula	Stru ctural Significance	1	$\frac{R}{2}$	elat 3	ive 4	91 5	rob 6	abi 7	lity 8	9	<u>10</u>	Total
246.		P.I.D. ions Other unclassified	-	4 2	4	2	1	4	2	4	3		24 2
247.	Cl _s Cl ³⁷ C	(HO) PhO $\frac{1}{2}$ CH ₃ , ClF ₈ , C ₄ Cl ₃ Cl ³⁷ F ₃ P.I.D. ions Other unclassified	1		2 2 1			1 1	1	4 1	2	2	4 12 2
248.	(H ₅ C ₂) ₄ - (C 1	cyclo-Si ₃ O ₃ \neq C ₂ H ₅) ₂ (?), Ph ₂ Cl ₂ C ₂ - Cl ₂ P.I.D. ions	1	1 3	3	1	2		1	2	1	4	2 17
249.	Cl₃ (H₅C B ((C C ((1	$_{2})_{2}$ PhCH ₂ $\frac{1}{7}$, etc., rBr ⁸¹ PhCH ₂ $\frac{1}{7}$, etc., $C_{3}H_{6}ClO)_{2}SiCl \frac{1}{7}$, $I_{4}Cl^{37}Ph \frac{1}{7}$, other, $_{6}Cl_{4}Cl^{37}$, $C_{3}HCl_{5}Cl^{37}$, ClH ₄ C ₂ O) ₂ POOC ₂ H ₄ - cl, C ₇ Cl ₂ F ₅ ; DCNPh) ₂ CH $\frac{1}{7}$ P.I.D. ions	4	1 1	2 1	6 2	1	3	1	1	1	1	19 8
250.	BrBr ⁸¹ (l	H ₂ N)Ph Br P.I.D. ions Other unclassified	5	3		5 2	1 3			1	2	2 1	1 21 3

m/e	Formula	Structural	1	<u>, R</u>	ela a	tiv	e P	rol	bab	ility 8	Ľ	10	Total
		Significance	1	-	5	Ξ	2	2	÷	≚	<u> </u>		Ioux
255.	C ₂ HBrBI ((C	$C_{19}H_{27}$ $C_{19}H_{27}$ $C_{19}H_{25}$ less one Y gp.), ${}_{7}F_{9}$; CH_{3} -benzanthra- ene- CH_{2} $\frac{1}{4}$ P.I.D. ions	1				3	1	2		1	1	8 1
256.	C ₆ Cl ₂ F ₆	P.I.D. ions Other unclassified	3	1	1	3		2	1 2		1	2 1	1 15 1
257.	C ₁₉ H ₂₉ (C	$C_{19} H_{25}$ less 2 Y gps.), $l_3 Cl^{37} (H_5 C_2) PhCH_2 \frac{1}{4}$ P.I.D. ions Other unclassified	4 1	1 4			1 1	1	2		2		11 5 1
258.		P.I.D. ions Other unclassified	4	3		1	1	1	1	3	3 1	1	18 1
259.	С ₆ Н ₅ Сl5 С С (1 е	Cl ³⁷ ¹ Cl, ⁵ ₅ Cl ₃ Cl ³⁷ F ₃ , ² ₄ H ₃ Br ^{ai} Cl ₂ F ₃ , CH ₃) ₂ PhCH (C ₁₁ H ₂₁) ¹ / ₇ , tc., C ₄ H ₈ ClOPh (Cl) C- CH ₃) ₂ ¹ / ₇ P.I.D. ions Other unclassified	- 3	1	1	1 3				1	1		7 5 1
260.	C4 C12C1	97 P.I.D. ions		2	1 2	1	4	2	1	2			1 14

ADVANCES IN CHEMISTRY SERIES

<u>m/e</u>	Formula	Structural Significance	<u>1</u>	<u>R</u>	$\frac{1}{3}$	<u>ive</u>	P 1 5	<u>6</u>	<u>abi</u> 7	<u>1ity</u> 8	9	10	Total
261.	C ₄ Cl ₃ F ₄ S	, $C_5 HCl_3 F_5$ P.I.D. ions Other unclassified	1 1	3	3	1	1	1	2 1	1	1	1	3 13 1
262.	H (BrBı (C	r ^{aı}) PhCO { OH, ₆ F ₁₀) P.I.D. ions	4	1		5	2	2	2	2	1	1	1 19
263.	Cl ₄ Cl ³⁷ P Bi C ₂	hCH ₂ { , Br ^{at} PhCH (CH ₃) { , Br ₂ Br ^{at} P.I.D. ions	3 1	2	1 1	3 1	2 2				1		9 8
264.	C2HBr2B (C	r ⁸¹ , H∔cyclohexyl- H ₃)-CH (C ₁₁ H ₂₃) ∔ R P.I.D. ions	3	2	5	2	2	1	1			1	2 15
265.	C ₂ H ₂ Br ₂] (H et H	Br ⁸¹ , [₇ C ₃) ₂ PhPhCH (CH ₃) { c., H ₃₃ C ₁₇ CO { 1 ₃ C ₇ CH (C ₁₁ H ₂₃) { P.I.D. ions	, 1 1	1 1	2	1 1	4		2	1	2	14	6 16
266.	Cl ₄ Cl ³⁷ I (I I ₂	PhO \ddagger R \ddagger H (rearr.), F_3 C) ₂ -triazine-CF ₂ \ddagger ; C \ddagger H ₂ P.I.D. ions	1 2	1	1	1	1 5	3	1	2		1	. 3 16

<u>m/e</u>	<u>Formula</u>	Structural Significance	<u>1</u>	<u>Re</u> 2	$\frac{1}{3}$	ive 4	<u>Pr</u>	<u>oba</u>	abi 7	lity <u>8</u>	9	<u>10</u>	P.I.D.	Uncl.	Total
267.	$(H_{9} C_{4}) Ph(C_{3} H_{1}) C_{4} C_{1} Ph(C_{1}) C_{1} $	DPhC (CH $_{3}$) ₂ $+$, H ₆ ClOPh (C ₄ H ₉) C - C ₂ (H ₃ C) ₂ Pb $+$, H $+$, H $_{56}$ C ₁₇ CO $+$; Cl ₃ F ₆ , (naphthyl) ₂ - + P.I.D. ions Other unclassified	3	1	1	1	1	1 2	11	3	3 1	2			10 11 1
268.	$({\rm H_{17}C_8})_2{ m N}$	CO +, (C ₈ F ₉) P.I.D. ions Other unclassified	2	2	1 4	1	1	3	1 1	2					1 16 1
269.	C ₆ H ₄ BrF 6 251 Br: C ₁₅	, $C_{19} H_{25}O(m/e)$ teroid + HOH), Br st ClPh $+ X$; $H_{21}Si_2$, $C_5 F_{11}$ P.I.D. ions Other unclassified	3	1			1 2		1		1 1	1			6 5 1
270.													11		11
271.	C ₁₉ H ₂₇ O († =0 CF C1	n/e 255 steroid +), CF₃Hg∔; '₃PhPhCF₂∔, ₃ (PhOPh) ∔X	1		1			1				1	4	3	11
272.	C ₅ C1 ₅ Cl ³⁷	'∔x₂						1	1				9		11
273.	C ₁₉ H ₂₉ O (HO	m/e 255 steroid + DH), Br (F ₃ C)													

PhCF₂ + ; C₃HBrBr^{at} F 1 1 In Mass Spectral Correlations; McLafferty, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

1 5

8

<u>m/e</u>	<u>Structural Significance</u>	-	<u>R</u>	<u>ela</u>	<u>4</u>	• P 5	rok 6	<u>abi</u> 7	ility 8	<u>9</u>	<u>10</u>	P.I.D.	Uncl.	Total
274.	$(C_7 F_{10})$											13	1	14
275.	$\begin{array}{c} C_5 \operatorname{Cl}_4 \operatorname{Cl}^{37} F_2, \ H_9 C_4 \text{-phenan-threne-C} \ (\operatorname{CH}_3)_2 \stackrel{1}{\xrightarrow{4}}, \\ C_4 \operatorname{Br}^{a1} \operatorname{Cl}_2 F_4, \\ (\operatorname{CF}_3 \operatorname{CH}_2 \operatorname{O})_2 \operatorname{POOCH}_2 \stackrel{1}{\xrightarrow{4}}; \\ H_9 C_4 \operatorname{OOCCH}_2 \operatorname{O-phCl}_2 \stackrel{1}{\xrightarrow{4}} \operatorname{Cl} & 2 \end{array}$		1			1				1	1	8		14
276.	$C1^{37} PhC_2 Cl_4 \neq Cl_2$					2						12	1	15
277.	Cl ₂ Cl ³⁷ CPhCCl ₂ \ddagger , etc., (H ₅ C ₂) ₅ -cyclo- trisiloxane \ddagger R, PhH ₄ C ₃ C (Ph) (CH ₃) \ddagger ; BrBr ^{an} -dihydro- benzofuran \ddagger , BrBr ^{an} PhC (CH ₃) ₂ \ddagger , dibenzanthracene \ddagger H 5	5				1			2	1		8	2	2 19
278.	H ┿ C ₆ H 10 -CH (C13 H 27) ┿ R							1			1	. 14	2	18
279.	$C_{3}H_{4}Br_{2}Br^{81}$, naphthyl - CH (C ₁₀ H ₁₉) $\frac{4}{1}$, C ₅ HCl ₃ Cl ³⁷ F ₄ 1	L			1	1	2					9	1	15
280.	H ₂₁ C ₁₀ CH (C ₉ H ₁₈) ∔ (H) R									1		13	6	14

<u>m/e</u>	Structural Significance	<u>1</u>		<u>ela</u>	<u>4</u>	<u>e</u> I	<u>6</u>	$\frac{bab}{7}$	<u>8</u>	<u>9</u>	<u>10</u>	P.I.D.	Uncl.	Total	-
281.	$ \begin{array}{c} (\mathrm{H_3C})_7\mathrm{Si_4O_4} \stackrel{1}{+} \mathrm{R}, \ \mathrm{H_3C} \ (\mathrm{H_5C_2})_{2^-} \\ \mathrm{Pb} \stackrel{1}{+}, \ (\mathrm{H_7C_3})_3 (\mathrm{PhPh}) \stackrel{1}{+} \\ \mathrm{C_9H_5F_8O}; \\ \mathrm{H_{13}C_6PhOPhC_2H_4} \stackrel{1}{+}, \\ \mathrm{H_{21}C_{10}CH} \ (\mathrm{C_9H_{19}}) \stackrel{1}{+}, \\ \mathrm{Cl_4Cl}^{37}\mathrm{PhS} \stackrel{1}{+}, \ \mathrm{C_6F_{11}} \end{array} $, 2		1	1			1	1	1	3	10		20)
282.												13	3	16	3
283.	BrBr ª PhCHCl 🛉									1		3	2	e	3
284.	C ₆ Cl ₅ Cl ³⁷	3										8		11	L
285.	Tetrahydronaphthyl- CH (C_{10} H ₂₁) $\frac{1}{4}$, C ₈ H ₂ F ₉ O		1					1				3		Ę	5
286.	$PhBi = R_2, (C_8 F_{10})$				1							10	1	1	2
287.	H ₂₉ C ₁₄ CHPh {			1								1	3	ļ	5
288.												6		(6
289.												1	1		2
290.												5	i		5

<u>m/e</u>	Structural Significance	<u>1</u>	$\frac{Re}{2}$	elat <u>3</u>	ive 4	<u>P1</u> 5	<u>ob</u>	abi 7	lity <u>8</u>	<u>9</u>	<u>10</u>	P.I.D.	Uncl.	Total	
291.	$C_5 HBr^{al} ClF_6,$ decahydronaphthyl - CH ($C_{10} H_{21}$)		1								1	3	1	6	
292.	BrBr ^{ai} H ₅ C ₃ PhO + COR + H (rearr.)							1				10	1	12	
293.	BrBr ⁸⁴ (HO)PhC(CH ₃) ₂ $C_4 H_6 Br_2 Br^{84}$, $C_7 F_{11}$; (naphthyl) ₂ - C=CHCH ₂ (ClH ₆ C ₃ O) ₂ SiClOC ₂ H ₄	- 1	1			1	1	1	1			4	1	11	
294.	BrBr ^{ai} H ₅ C ₃ PhO \ddagger COR \ddagger H (rearr.), H \ddagger (H ₂₀ C ₁₀) - CH (C ₁₀ H ₂₁) \ddagger R				1					1		8		10	1
295.	Cl ₃ PhOPSCl ³⁷ \ddagger , H ₁₃ C ₆ PhOPhC ₃ H ₆ \ddagger , (H ₅ C ₂) ₃ Pb \ddagger , etc.; (H ₂₁ C ₁₀) ₂ CH \ddagger , etc.	2	1		1		1	1			2	4		12	•
296.												7		7	,
297.	$C_5 Cl_3 Cl^{37} F_5$							1				3		4	ł
298.												3	1	4	ł
299.	H ₉ C₄-pyrene-C (CH₃)₂ ↓		1									2	}	3	3

<u>m/e</u>	Structural Significance	<u>1</u>	<u>Relative Probab</u> 2 <u>3 4 5 6 7</u>	oility 8	<u>9 10</u>	P.I.D.	Uncl.	Leten	TRINT
300.						3	;]	1	4
301.	C ₂ HBrBr ^{a1} ₂ Cl	1							1
302.						1	. :	2	3
303.						1	L	1	2
304.	None								
305.	C ₈ F ₁₁			1				1	2
306.							4		4
307.	$\begin{bmatrix} H_{3}C (H_{9}C_{4}) Ph - \end{bmatrix}_{2} CH \stackrel{1}{=} etc., \\ C_{5}Cl_{6}Cl^{37}$	1			1		1	1	4
308.							5	1	6
309.	$H_{ss}C_{17}CH(C_4H_9)\frac{1}{2},$ etc.			3		3	4	2	12
310.							5		5

291-310

m/e

In Mass Spectral Correlations; McLafferty, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

Mass Spectral Data

<u>m/e</u>	Structural Significance	<u>1</u>	1	Re	lat 3	<u>ive</u>	<u>5</u>	rok 6	<u>abi</u>	ility 8	<u>9</u> 1	10	P.I.D.	Uncl.	Total
311.	Cl ₃ CPh (Cl) CClCl ³⁷ +	2											1		3
312.	(C ₇ F ₁₂)												6	1	7
313.	$Br_{2}Br^{ai} Ph \stackrel{4}{+} X,$ $C_{5}Cl_{4}Cl^{37} F_{4}$									1		1	3		5
314.													5	1	6
315.	C ₃ H ₃ BrBr ^{a1} ₂ Cl	1											3		4
316.													2	2	4
317.	(C ₉ F ₁₁)												1		1
318.													2		2
319.	$C_{6}Cl_{6}Cl^{37}$, ($C_{6}F_{13}$)				1										1
320.													1		1
321.													1		1

<u>m/e</u>	Structural Significance	<u>1</u>	R 2	<u>ela</u>	tive 4	Pr 5	obab 6 7	ility 8	<u>9 10</u>	P.I.D.	Uncl.	Total
322.										3		3
323.										1	1	2
324.	$(CF_{3}CH_{2}O)_{2}POOC_{2}HF_{2} \stackrel{1}{\neq} HF, (C_{8}F_{12})$	1								2	1	4
325.	$[HO (C_4 H_9) Ph-]_2 C (CH_3) \frac{1}{4}, (F_3CCH_2O)_2 POOCH_2CF_2 \frac{1}{4}]$	1	1									2
326.										2		2
327.	(H ₉ C ₄ OOC) ₂ C ₃ H ₃ COOC ₃ H ₆ { , Br ₂ Br ^{at} PhCH ₂ {		1	1						1		3
328.										2		2
329.	H ₃₆ C ₁₇ CH (Ph) +								1	2		3
330.										3		3
331.	$C_{21} H_{23} Si_2$, $(C_7 F_{13})$	1								1		2
332.										1		1

1

<u>m/e</u>	Structural Significance	<u>1</u>	2	Re	ela 3	tiv 4	e I 5	<u>e</u>	<u>7</u>	oilit <u>8</u>	<u>y</u> 9	<u>10</u>	P.I.D.	Uncl.	Total
333.													1		1
334.													2		2
335.	None														
336.	(C ₉ F ₁₂)												1		1
337.	$H_{43}C_{21} CH (C_2 H_5) \frac{1}{4}$								1						1
338.													2		2
339.													2		2
340.													2	1	3
341.	$Br_2 Br^{ai}$ PhCH (CH ₃) +	1											1		2
342.													8		8
343.	Br ₂ Br ^{a1} (HO) (H ₃ C) Ph { Br; C ₈ F ₁₃					1					1		3		5

<u>m/e</u>	Structural Significance	Relative Probability I <thi< th=""> <thi< th=""> I <thi< th=""></thi<></thi<></thi<>	Total
344.	$C_2 Br_2 Br_2^{a1} \neq X_2$	2 4 1	7
345.	$\begin{array}{c} C_{2}HBr_{2}Br_{2}^{a_{1}} + X, \\ I_{2} (HO) Ph + X \end{array}$	2 2	4
346.		8	8
347.		3	3
348.	(C ₁₀ F ₁₂)	2	2
349.		1	1
350.		2 1	3
351.		1	l 1
352.		2	2
353.	None		
354.		1	1

<u>m/e</u>	Structural Significance	<u>1</u>	<u>Rel</u> 2 3	lativ	<u>7e F</u>	<u>rot</u>	<u>pab</u> 7	ility <u>8</u>	9 10	P.I.D.	Uncl.	Total	
355.	Silicones, (C_9F_{13})									2		2	
356.										2		2	
357.										1		1	
3 58.										4		4	
359.	$C_{s}H_{s}Br_{2}Br_{2}^{at}$ -	1										1	
360.	None												
361.										1		1	
362.	$(C_{8}F_{14})$												
363.	None												
364.										2	2 1	3	
365.										2	2 1	. 3	;

<u>m/e</u>	Structural Significance	<u>1</u>	<u>R</u> 2	<u>ela</u>	tive 4	<u>91</u> 5	roba 6	ubili 7	<u>ity</u> 8 9	<u>10</u>	P.I.D	Uncl.	Total
366.	None												
367.	(C ₁₀ F ₁₃)												
368.	Cholestene \neq (H) OY (Y= -OH, -OCOR)	1	1									2	4
369.	(C ₇ F ₁₅)												
370.	Cholestane $\frac{1}{2}$ (H) OY (Y= -OH, -OCOR)	1		2		1					1		5
371.	None												
372.	None												
373.	None												
374.	(C ₉ F ₁₄)												
375.	None												
376.	None												

<u>m/e</u>	Structural Significance	<u>1</u>	<u>F</u> 2	<u>a</u>	<u>4</u>	<u>e P</u> 5	<u>rok</u>	$\frac{bab}{7}$	ility <u>8</u>	y 9	<u>10</u>	P.I.D	Uncl.	Total	-
377.	None														
378.	None														
379.	(C ₁₁ F ₁₃)												1	. 1	L
380.	None														
381.	C ₈ F ₁₅						1			1				2	2
382.	None														
383.													1	LI	1
384.	None														
385.	None														
386.	(C ₁₀ F ₁₄)													1	1
387.	None														

<u>m/e</u>	Structural Significance	<u>1</u>	<u>F</u> 2	<u>tela</u>	<u>4</u>	<u>e P</u> 5	<u>rol</u>	oab 7	<u>ilit</u> <u>8</u>	У <u>9</u>	<u>10</u>	P.I.D.	Uncl.	Total	
388.													1	1	
389.	None														
390.												2		2	
391.	None														
392.												1		1	
393.	(C ₉ F ₁₅)														
394.												3		3	
395.												1		1	
396.												1		1	
397.	None														
398.												1	L	1	

Mass Spectral Data

m/e

377-398

100							AD	VAN	CES	IN	CHE	MIS	TRY	SERIES
<u>m/e</u>		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	P.I.D.	Uncl.	Total
399.	None													

4036 3926 3864 1728 883 387 184 119 107 112 349 51 15,746

Grand Total

Mass Spe	ectral Data	m/e	399-417		
<u>m/e</u>	Ion				
400.*					
401.	$C_4 \operatorname{Br}_2 \operatorname{Br}^8$	¹ F ₆ (6th p	eak)		
402.					
403.					
404.					
405.	C ₁₀ F ₁₅				
406.					
407.					
408.					
409.					
410.					
411.					
412.	C ₉ F ₁₆				
413.					
414.					
415.					
416.					
417.	C ₁₁ F ₁₅				

<u>m/e</u>	<u>Ion</u>	
418.		
419.		
420.		
421.		
422.		
423.		
424.	C 10 F16	
425.		
426.		
427.		
428.		
429.	Silicones	
430.		
431.	C 9 F17	
432.		
433.		
434.		
435.		
436.	C ₁₁ F ₁₆	

<u>m/e</u>	Ion			
437.				
438.				
439.				
440.				
441.				
442.				
443.	C ₁₀ F ₁₇			
444.				
445.				
446.				
447.	C ₄ Br ₃ Br ₂ ⁸¹	(1st peak)		
448.	C ₁₂ F ₁₆			
449.				
450.				
451.				
452.				
453.				
454.				
455.	C ₁₁ F ₁₇			

ADVANCES	IN	CHEMISTRY

SERIES

<u>m/e</u>	Ion	
456.		
457.		
458.		
459.		
460.		
461.		
462.	C ₁₀ F ₁₈	
463.		
464.		
465.		
466.		
467.	C ₁₂ F ₁₇	
468.		
469.	C ₉ F ₁₉	
470.		
471.		
472.		
473.		
474.	C ₁₁ F ₁₈	

Ion

<u>m/e</u>

475.

476.		
477.		
478.		
479.		
480.		
481.	C ₁₀ F ₁₉	
482.		
483.		
484.		
485.		
486.	C ₁₂ F ₁₈	
487.		
488.		
489.		
490.		
491.		
492.		

^{493.} C₁₁ F₁₉

In Mass Spectral Correlations; McLafferty, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

<u>m/e</u>	Ion			
494.				
495.				
496.				
497.				
498.				
499.				
500.				
501.				
502.				
503.				
504.				
505.	C ₁₂ F ₁₉			
506.				
507.				
508.				
509.				
510.				
511.				
512.	C ₁₁ F ₂₀			
<u>m/e</u>	Ion			
------------	---------------------------------	--		
513.				
514.				
515.				
516.				
517.	C ₁₃ F ₁₉			
518.				
519.				
520.				
521.				
522.				
523.				
524.	$C_{12} F_{20}$			
525.				
526.				
527.				
528.				
529.				

531. C₁₁ F₂₁

<u>m/e</u>	Ion
532.	
533.	
534.	
595	
535.	
536.	$C_{13} F_{20}$
537.	
538.	
539.	
540.	
E 4 1	
041 .	
542.	
543.	C ₁₂ F ₂₁
544.	
545.	
546.	
547	
J71.	
548.	
549.	
550.	

ADVANCES IN CHEMISTRY SERIES

108

<u>m/e</u>	Ion	
551.		
552.		
553.		
554.		
555.	C ₁₃ F ₂₁	
556.		
557.		
558.		
559.		
560.		
561.		
562.	$C_{12} F_{22}$	
563.		
564.		
565.		
566.		
567.	C ₁₄ F ₂₁	
568.		

<u>m/e</u>	Ion	
570.		
571.		
572.		
573.		
574.	$C_{13} F_{22}$	
575.		
576.		
577.		
578.		
579.		
580.		
581.	$C_{12} F_{23}$	
582.		
583.		
584.		
585.		
586.		
587.		
588.		

<u>m/e</u>	Ion		
589.			
590.			
591.			
592.			
593.	$C_{13} F_{23}$		
594.			
595.			
596.			
597.			
598.			
599.			
600.			
605.	$C_{14} F_{23}$		
610.			
615.			
617.	$C_{15} F_{23}$		

112			ADVANCES	IN	CHEMISTRY	SERIES
m/e_	Ion					
620.						
625.						
630. 631.	$C_{13}F_{25}$					
635.						
640.						
643.	$C_{14} F_{25}$					
645.						
650.						
655.						
660.						
665.						
670.						

m/e	Ion
680.	
685.	
690.	
695.	
700.	
705.	
710.	
715.	
720.	
725.	
730.	

In Mass Spectral Correlations; McLafferty, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1963.

114		ADVANCES	IN	CHEMISTRY	SERIES
<u>m/e</u>	Ion				
740.					
745.					
750.					
755.					
760.					
765.					
770.					
775.					
780.					
785.					
790.					
795.					

<u>m/e</u>	Ion	
800.		
825.		
850.		
875.		
900.		
925.		
950.		
975.		
1000.		
1025.		
1050.		
1075.		

116		ADVANCES	IN	CHEMISTRY	SERIES
<u>m/e</u>	Ion				
1100.					
1125.					
1150.					
1175.					
1200.					
1250.					
1300.					
1350.					
1400.					
1450.					
1500.					
1600.					

1900.

2000.